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This final report consists of a compilation of four separate written documents, three dealing with
the response and failure of elliptical composite cylinders to an internal pressure load, and the
fourth dealing with the influence of manufacturing imperfections in curved composite panels. The
three focused on elliptical cylinders consist of the following:

1 - A paper entitled “Progressive Failure Analysis of Internally Pressurized Elliptical Composite
Cylinders,” which is included in the Proceedings of the 15th Annual Technical Meeting of the
American Society for Composites held in September 2000.

2 - A paper entitled “Influence of Geometric Nonlinearities on the Response and Failure of
Internally Pressurized Elliptical Composite Cylinders,” AIAA paper no. 2000-1516, which is
included in the Proceedings of the 41st Structures, Structural Dynamics, and Matenals
Conference held in April 2000.

3 - A report entitled “Response and Failure of Internally Pressurized Elliptical Composite Cylin-
ders,” dated September 1999.

The document which deals with the influence of manufacturing imperfections is a paper entitled
“Manufacturing Distortions of Curved Composite Panels” which is included in the Proceedings of
the 14th Annual Technical Meeting of the American Society for Composites held in September
1999.



PROGRESSIVE FAILURE ANALYSIS OF INTERNALLY PRESSURIZED
ELLIPTICAL COMPOSITE CYLINDERS

Jennifer M. McMurray
Michael W. Hyer

Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg VA 24061

ABSTRACT

Presented is a brief overview of a study which focuses on the use of a pro-
gressive failure analysis to predict the failure pressure, mode, and location of inter-
nally pressurized composite cylinders with elliptical cross sections. The analysis is
based on a STAGS finite-element analysis, the maximum stress failure criterion, and
a material degradation scheme and the associated redistribution of stresses. A small-
scale clamped quasi-isotropic cylinder with a ratio of minor to major diameters of
0.7 is used as an example. A classic first ply failure analysis is also considered for
comparison.

INTRODUCTION

Cylinders are often used as the idealized model for a number of important
structures. Aircraft fuselages, missile cases, submarine hulls, and tankage for storing
and transporting various liquids and gases are but a few example structures. Of inter-
est are deflections, buckling loads, vibration frequencies, stress levels, and interac-
tions with endfittings or supports. Cylinders with circular cross sections are
generally used as the basis for many of the models, and much has been written
regarding the analysis of circular cylinders. However, next generation civil trans-
ports may well utilize fuselage designs that depart from the normal circular cross
section, and future reusable launch vehicles may use fuel tanks that are noncircular.
Aerodynamic, structural, or payload considerations may dictate the noncircular
designs. These aerospace structures can also be idealized as cylinders, but with non-
circular cross sections. Since fiber-reinforced composite materials are often the
material of choice for aerospace applications, due to weight and design flexibility, it
is logical to consider composite materials for these two applications. Furthermore,
for both fuselages and fuel tanks for reusable launch vehicles, internal pressure is an
important loading. For a fuselage, an elevated internal pressure is necessary for the
passenger. For fuel tanks, liquification of a gaseous component of the fuel at cryo-
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genic temperatures leads to internal pressure. In both cases, failure in the sense of
catastrophic material failure is important, but also, failure in the sense of leakage of
the cylinder wall can be important. This paper examines the failure of internally
pressurized noncircular cylinders by considering cylinders of elliptical cross section.
Failure is addressed both by a first ply failure analysis and by a progressive failure
analysis. With the latter, rather than stop the analysis when the pressure reaches the
level to cause failure, as predicted by some failure criterion, material properties are
degraded as failure occurs, the pressure is increased, and the analysis continues. A
finite-element analysis is used. Elliptical cross sections are considered because ana-
Iytical expressions can be written to represent the geometry of the cross section.
However, it is felt that many of the conclusions reached for the case of elliptical
cross sections also hold for more general noncircular cross sections.

The sections that follow define the specific problem being addressed. The
geometry, boundary conditions, and general nomenclature are introduced. The finite-
element model used to compute the stresses, and hence the failure characteristics, is
discussed. The failure criterion is described, particularly the scheme for introducing
material degradation. Results for a quasi-isotropic cylinder are presented and dis-
cussed.

PROBLEM DEFINITION

The particular problem being discussed is described in fig. 1. The cylinder
has a reference surface of length L, the major and minor diameters are 2a and 2,
respectively, and the cylinder wall is of thickness H. The circumference of the cylin-
der is denoted as C, and here the ellipticity e is defined as the ratio of the minor to
major diameters. The crown and keel denote the upper and lower flatter parts of the
cylinder, and the sides the more curved portions. Spatial positions axially are

2a = major diameter

2b = minor diameter
e = b/a = ellipticity

C = circumference

FIGURE 1. Problem description, nomenclature, and geometry of an elliptical cylinder.



denoted by x, with x = 0 at the cylinder midspan, i.e., -L/2 < x < +L/2. The circumfer-
ential coordinate is s, where s = 0 at the top of the cylinder and -C/2 < 5 < +(C/2.
While they will not be discussed specifically, the axial, circumferential, and normal

components of displacement of the reference surface are given by #°, v°, and w°,
respectively. The internal pressure is denoted p,. Compared to a circular cylinder,
the behavior of the elliptical cylinder displacements due to internal pressure is sig-
nificantly different and is characterized by the cylinder tending to become more cir-
cular as the internal pressure increases. This leads to the existence of circumferential
displacements and inward normal displacements at the ends of the major diameter
[1-3]. Both ends of the cylinder are assumed to be attached to rigid end caps.
Accordingly, the ends are considered fully clamped, except for the fact that the end
at x = +L/2 can move axially to accommodate the axial motion A which is due to the
axial strain caused by a combination of internal pressure and Poisson’s ratio effects.
Specifically, the boundary conditions are given by

i)uo=0@x=-£,u°=d@x=+£
2 2
®

[}
i) v° = iiyw’=0 i =o.
Ox

The finite-element mesh representing the cylinder is shown in fig. 2. The
STAGS finite-element code [4] is used to solve for cylinder response, and it should
be noted that the mesh density in the axial direction increases toward the ends of the
cylinder. This is due to the high gradients in the displacements near the ends. There
are 70 elements in the axial direction and 50 in the circumferential direction. The
410 element from the STAGS element library is used. Geometric nonlinearities are
included.

FIGURE 2. STAGS finite element mesh for an elliptical cylinder.



FAILURE CRITERION

For both the first ply, or nonprogressive, failure analysis and the progressive
failure analysis, the maximum stress criterion is used to indicate material failure.
Previous work [1-3] has shown that interlaminar stresses have minimal contribution
to failure and thus are ignored here. The material is assume to have not failed if the
following inequalities are all satisfied:

Fiber Modes | Matrix Modes | Shear Mode
o - C- —0-
—1;1-<1 —_”<l —%<1 —2<1 l.__lalz <1 @
T4 Ty or o1 iz

These equations are written in the principal material coordinate system and the quan-
tities o4 and o are the tensile and compressive failure stresses in the fiber direc-

tion. In like fashion, op" and oy are tensile and compressive failure stresses
perpendicular to the fibers, in the plane of a layer, and 74 is the shear failure stress in

the plane of a layer. When any of the five stress ratios equals unity, failure of the
material is assumed to have occurred, the failure mode being determined by the par-
ticular equation. For the work here, the values of the failure stresses are given by

o, = 200,000 psi oy = 7250 psi r, = 14,500 psi
©)
o, = 180,000 psi or = 29,000 psi

For the nonprogressive failure analysis, the pressure required to cause one of
the five equations to be unity is computed. This is done by computing the strains and
curvatures at the centroids of all elements and then computing the stresses as a func-
tion of cylinder wall thickness location. The result of these calculations is the failure
pressure, the element, the location within the wall, and the mode of first failure. For
the progressive failure analysis, the same calculations are performed to find the first
failure. However, the material properties in the particular layer or layers that fail are
then reduced within the finite-element according to the following scheme: If matrix
of shear failure occurs then E, and G, are degraded by 80%. If fiber failure occurs

then E;, E, and G, are degraded by 80%. These reductions reflect the loss of stiff-

ness due to matrix and fiber failures. Following the reductions in properties, the
stresses within the cylinder are recomputed using the pressure that caused first fail-
ure. Generally other failures result from the localized redistribution of stresses that
accompany the local reductions in stiffness. Stiffness are further reduced and the
stresses are recomputed at the same pressure. After several iterations, no further fail-
ures occur due the redistribution of stresses and the pressure is increased until the
next failure is encountered. The material properties are reduced in the appropriate
elements and layers and the stresses recomputed with the pressure fixed. Again, after
several iterations, no further failures occur at that pressure and the pressure is
increased again. This process is continued to any desired pressure level.



NUMERICAL EXAMPLE

As a forerunner to testing full-scale cylinders in the laboratory, small-scale
cylinders are being studied. As a result, numerical results here will focus on cylin-
ders with dimensions L = 12.5 in, 2a = 10 in., 2b = 7 in. made of graphite-epoxy
using an eight-layer quasi-isotropic [+45/0/90]g layup. As a result, the ellipticity e is
0.70. The material properties are assumed to be

E, = 18.85 Msi E, = 1407 Msi

4
G;, = 0.725 Msi v;, = 0.300 h = 0.0055 in. @
and the layer thickness is 0.0055 in.

As might be expected, the first failure to occur is matrix failure, specifically
due to a tensile o,, and it occurs at a pressure pyof 140 psi. The first failure occurs at
the ends of the cylinder in the inner layer, a +45 deg. layer. Because of the noncircu-
lar geometry, the stresses vary with circumferential position and as a result, there are
specific circumferential locations where the matrix fails first. The lefthand portion of
fig. 3 illustrates the location of this failure. In the figure one quadrant of the cylinder
is rendered in somewhat of a three-dimensional fashion. The quadrant extending
from 0 < x < +L72 and -C/4 < s < +C/4 is shown, but with the through-thickness loca-
tion, ¢, normalized by the wall thickness H and greatly exaggerated in proportion to
x and s, also included in the rendering. There is a dot indicating the location of the
first matrix failure, namely the inner layer at s/C = -0.124. There is not another dot at
s/C = +0.124 because despite geometric symmetry about s = 0, the material proper-
ties are not symmetric about s = 0 - i.e, D ;s and D,4 are nonzero - so the cylinder
failures there at a slightly higher pressure. There is a companion failure at s/C =
+0.376 (not shown), and there are failures at similar locations at the other end of the
cylinder (not shown). Since first matrix failure is generally not catastrophic, the
pressure to produce the first fiber failure, with no degradation in material properties,
is also computed. The first fiber failure is a compressive failure which occurs at the

First Matrix Failure: 140 psi First Fiber Failure: 260 psi
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FIGURE 3. Nonprogressive failure of a quasi-isotropic eliiptical cylinder.



end of the cylinder in layer no. 8, the outer +45 deg. layer, at a pressure of 260 psi.
The location is shown in the righthand portion of fig. 3. These numbers, which are
summarized in table 1, agree well with the first matrix and fiber failures computed
using a semi-closed form solution [1-3]. The differences that occur are due to the
fact that the centroid of the failed element is not at the exact end of the cylinder,
whereas with the semi-closed form solution, the failure was predicted to occur
exactly at x =L/2.

The results of a progressive failure analysis for first matrix and first fiber
failures are shown in fig. 4. The first matrix failure, namely, the lefthand side of the
figure, is identical to the nonprogressive first matrix failure, namely the lefthand side
of fig. 3, because matrix failure is the first to occur in both cases. The righthand side
of fig. 4 indicates with dots the locations of all the failures that occur up to and
including first fiber failure. The first fiber failure dot is circled in the figure and
occurs in the outer layer, again due to compression at s/C = -0.124. For the progres-
sive analysis, the pressure to cause first fiber failure is 250 psi, slightly less than the
260 psi of the nonprogressive case. While this is not a large decrease, these results
are for one laminate and one cylinder geometry. Furthermore, the results may be sen-
sitive to the material property degradation scheme and the failure criterion used.
What is shown in fig. 4 is but a specific example. It is important to point out in fig. 4
that matrix failure begin to occur away from the end of the cylinder. Also, for this
example, fiber failure occurs at about twice the pressure of first matrix failure.

Before closing, it is instructive to consider two other issues. Figure 5 pro-
vides an indication of why at a given pressure it is important to iterate to determine
all the failures when using the material degradation scheme described. The lefthand
portion of the figure shows the matrix failures predicted by the first initial iteration
of material degradation at 200 psi. The righthand portion shows the matrix failures at
the final iteration at 200 psi. Though the details are difficult to discer, the circled
regions show where iteration results in additional matrix failures. The need for itera-
tion is an artifact of the numerical scheme employed, but physically the need to iter-
ate is due to the redistribution of stresses that accompanies failure. Finally, fig. 6
compares matrix failures for the nonprogressive and progressive failure analyses.

First Matrix Failure: 140 psi First Fiber Failure: 250 psi

FIGURE 4. Progressive failure of a quasi-isotropic elliptical cylinder.



Final 200 psi

FIGURE 5. Effects of progressive failure for a quasi-isotropic elliptical cylinder at 200 psi.

The lefthand side is somewhat fictitious and shows the matrix failures and one fiber
failure (circled) that are predicted to occur at 260 psi using the nonprogressive anal-
ysis. The righthand side shows the matrix failures and one fiber failure that occur at
250 psi using the progressive failure analysis. The lefthand side is fictitious because
the effects of all the matrix failures on material properties are ignored when comput-
ing first fiber failure. The decreased number of matrix failures for the 250 psi pro-
gressive case relative to the 260 psi nonprogressive case show the combined effects
of a 10 psi pressure increase and stress redistribution caused by material degrada-
tion.

Presented has been a discussion of failure of elliptical composite cylinders
due to internal pressure. The key points of the discussion are: 1 - Failure occurs at a
specific circumferential location due to the varying geometry; 2 - Fiber failure
occurs at about twice the pressure of first matrix failure; and 3 - The Progressive fail-
ure analysis leads to a slightly lower fiber failure pressure.

Nonprogressive: 260 psi Progressive: 250 psi
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FIGURE 6. Comparison between Nonprogressive failure predictions for a quasi-isotropic
elliptical cylinder.



TABLE I. COMPARISON OF MATRIX AND FIRST FIBER FAILURE FOR
NONPROGRESSIVE AND PROGRESSIVE FAILURE ANAL YSES.

Fiber (Nonprogressive) Fiber (Progressive)
140 260 _250__-_I-F
loc 1 (+45) 8 (+45) 8 (+45)
&/C -0.124 -0.124 0.124
mode +o, -0y -0y
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INFLUENCE OF GEOMETRIC NONLINEARITIES ON THE RESPONSE AND FATLURE OF
INTERNALLY PRESSURIZED ELLIPTICAL COMPOSITE CYLINDERS

Jennifer M. McMurray* and Michael W. Hyer!
Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

Abstract

Discussed are the characteristics of the
response of internally pressurized elliptical composite
cylinders, including failure. The influence of the ellipti-
cal geometry is illustrated by comparison with a circular
cylinder. The influence of orthotropy is illustrated by
considering axially-stiff, circumferentially-stiff, and
quasi-isotropic laminates. The influence of geometric
nonlinearities is studied by inclusion of the von Karman
terms in the strain-displacement relations. Two failure
criteria are considered, the Hashin criterion and the
maximum stress criterion. These are used to compute
the pressures to cause matrix cracking and fiber failure.

Problem Descripti

The problem considered consists of the cylin-
der described in fig. 1, with a, b, and L denoting, respec-
tively, the semi-major diameter, semi-minor diameter,
and axial length of the cylinder reference surface. The
degree of ellipticity, e, is defined here as the ratio, b/a.
The wall thickness of the cylinder is denoted by H and
the internal pressure by p,. The displacement of the ref-

erence surface in the axial, x, direction is denoted by
u°(x,s), that in the circumferential, s, direction by
v°(x,s), an that in the direction normal to the reference
surface by w°(x,s). The upper part of the cross-section is
referred to as the crown, the lower part the keel, and the
sides are referred to as the sides. It will be assumed the
cylinder ends are clamped to a rigid end plate or bulk-
head which can move axially. Accordingly, clamped
boundary conditions are applied to each end of the cyl-
inder, with the exception of allowing the end atx = +L/2
to expand uniformly in the axial direction with displace-
ment 4. The end at x = -L/2 cannot move axially in
order to restrict axial rigid body translation. Formally,
the boundary conditions at the ends of the cylinder

(x = #L/2) are
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i)u°=0@x=-§,u°-A@x-+§'
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i’ =0 @i)w’=0 ¥ =0
Ox
The end displacement 4 is determined by enforcing
axial equilibrium of the end enclosure at x = +L/2,

namely,

ﬁ&¢=pﬁu, @

where N, is the axial force resultant within the cylinder
(to be defined shortly), C is the circumference of the
cylinder reference surface, and the cross-sectional area
of the ellipse is mb. Physically, eq. 2 states that the net
axial force due to the internal pressure times the cross-
sectional area of the end enclosure must be balanced by
the net axial force due to the axial force resultant.

Solution Approach

The solution procedure begins with the expres-
sion for the total potential energy of the cylinder,
namely,

1 o o o ]
x= EIOCJ'ENxsx + Nssl * Nxﬂxl +Mx‘(x

+M,x] + M7, |dxds.

X8 xX¥

€))

The force and moment resultants in eq. 3 are defined by

2 0 o
N-‘ c dl = A, e, +A4,,¢
x -H/2x 11%x 12%s

72

o °
N, = o, = Aps, +Ane,

-H’2

72 °
Nx: = r[ 1::“‘ = A667xx
_H’? (4)

M, = & = Dy k2 +Dy,x2 +DygKe

x ol 1%¥x 12K 16%xs
-H/72

M = [T gtd = D2 +Dyx’ + Dygk’®

2 _H” ] 12™x 22" 26" xs

M, = f;;“xxg‘g = Dygx; + Dy + Degkzy
where ¢ is the through-thickness coordinate within the
cylinder wall. As seen from the form of eq. 4, only sym-
metric and balanced laminates are being considered.
The reference surface strains and curvatures in the
energy expression are related to the reference surface

displacements by
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Note that the radius of curvature being a function of s in
&, is what makes this problem different than that of a
circular cylinder. The underlined terms in eq. 5 denote
the geometric nonlinearities. These are the von Karman
approximations to the fully nonlinear strain-displace-
ment relations.

With the radius of curvature varying circumfer-
entially, a closed-form solution to the problem is not
easily found. Accordingly, an approximate solution is
sought. To begin the approximate solution, the circum-
ferential variation of the inverse radius of curvature is
expanded, in a method suggested by Marguerre [1],in a
cosine series, such that

1 »
1< Z a“cosw, (6)

where the coefficients a; are constants which depend on
the specific cross-sectional geometry (semi-diameters a
and b) and 7 is the number of terms needed to properly
represent the variation of the inverse radius of curvature.
The dependence of the reference surface displacements
on the circumferential coordinate is approximated using
the Kantorovich method by a harmonic series in a form
inspired by the inverse radius of curvature, namely,

N
W(x, ) = uZ(x)+ Z u (x)cosmg"

n=1
dmxs
+ Z uNH"(x)sm
m=1

4mxs

M

Voix,s) = vZ(x) + Zlv:(x)cos C
=

. Q)

+ zl Vags () s1n4'g"

4dnxs

N
w’(x,s) = wz(x)+ Z w (x)cos a

n=1

M

+ lel‘:H M(x)sin“"g".
where M and N determine the number of terms in the
various series. For an isotropic cylinder, sine terms
would not be necessary for u°(x,s) and w°(x,s), while

cosine terms would not be necessary for v°(x,s). The
presence of the bending stiffness terms D;s and D4
makes inclusion of these terms necessary.

With eq. 6 and eq. 7, the displacements and the
radius of curvature have been explicitly expressed in
terms of the circamferential coordinate, s. Substituting
the displacements of eq. 7 into the strains and curvatures
of eq. 5, and these, in tum, into the stress and moment
resultants of eq. 4, integration of the energy expression
with respect to s can be performed. The integrand of the
energy expression is then dependent on the coefficients
in eq. 7, which are only a function of x. As a result, the
energy expression can be written symbolically as

L
= 2
%= _L[ OU(x,s)ds]dx
®
j’F(y (¥, ¥ (x), Y (), (= 1,3V + M+ 1))

In eq. 8 the y, (%) represent the functional coefficients in
eq. 7 and ()' represents differentiation with respect to
the axial coordinate x. Although the integrand above is
also a function of cylinder geometry, material proper-
ties, and the pressure, they are constants that are not
involved in the variational process. Equating the first
variation of the total potential energy to zero results in
the Euler-Lagrange equations for the y,(x) and the asso-
ciated variationally consistent boundary conditions at x
= #1/2. The boundary conditions of eq. 1 translate into
specifying values of y;(x) and y;'(x). Defining intermedi-
ate variables in order to reduce the system from a third-
order to a first-order form, it is possible to obtain a set of
coupled nonlinear first-order ordinary differential equa-
tions which are integrated by the finite-difference
method using the IMSL subroutine DBVPFD, a vari-
able-order, variable-step-size algorithm employing
Newton’s method. By rendering the governing Euler-
Lagrange equations to first-order form, various deriva-
tives of 1°, v°, and w*® are directly available for comput-
ing reference surface strains and curvatures and force
and moment resultants. More importantly, stresses as a
function of x, s, and { can be computed.

Character of the Response

Though ultimate interest with elliptical cylin-
ders is for application to aircraft fuselage structures, ini-
tial experimental work will take place with small scale
cylinders. The displacement, strain, and stress response
of these smaller cylinders must be understood before
studies of large-scale cylinders can commence. To that
end, in the present study numerical results will be shown

American Institute of Aeronautics and Astronautics



for eight and nine layer graphite-epoxy cylinders with
semi-major diameters of 127.0 mm, ellipticities of 0.7,
and lengths of 0.318 m. The material and geometric
propetties of a layer of graphite-epoxy are taken to be

E, = 1300 GPa E, = 970 GPa

_ )
Gy, = 500GPa vy, = 0.300

h = 0.1400 mm
where A is the thickness of a single layer. The laminates
considered are: quasi-isotropic, [+45/0/90]g; axially-
stiff, (+45/0,/90y]s; circumferentially-stiff,
[245/90,/01,]g, where O deg. is the axial direction. These

lay-ups were selected because each has at least one layer
with its fibers in the axial direction, at least one layer
with its fibers in the circumferentiai direction, and +45
degree layers. Eight or nine layers is a reasonable num-
ber from the point of view of manufacturing the cylin-
ders by hand on elliptical mandrels.

In order to demonstrate the influence of ellipti-
cal geometry, the basic responses of an elliptical cylin-
der subjected to internal pressure are compared with
those of a circular cylinder. For this comparison the
quasi-isotropic laminate is chosen and a geometrically
linear analysis is used to compare reference surface dis-
placements. Figure 2 illustrates axial, circumferential,
and normal displacements as a function of the axial and
circumferential coordinates. The displacements have
been normalized by the laminate thickness H. An inter-
nal pressure of p,=0.690 MPs is used to compute the
results in these figures. The format of the fig. 2 illus-
trates the response of one-eighth of the cylinder. The
coordinate locations have been normalized and, refer-
ring to fig. 1, the range of 0 Sx/L £0.5and 0 < o/C <
0.25 is considered. Due to the presence of D4 and D,

the problem does not exhibit octal symmetry. However
looking at only one eighth of the cylinder provides a
fairly accurate detailing of the response, and simplifies
displaying the results. Implementing symmetry and anti-
symmetry arguments for various responses, the response
for the remainder of the cylinder can be envisioned.
Regarding the axial displacement, for an inter-
nally pressurized circular cylinder the axial displace-
ment would be the net result of the pressure forcing the
end enclosures apart and the Poisson effect due to cir-
cumferential expansion pulling them together. This
results in a nearly linear axial displacement with the
axial coordinate and, since the problem is axisymmetric,
the axial displacement would not vary with s. Recall
from the boundary conditions of eq. 1 that the axial dis-
placement is zero at x/L = -0.5. At x/L = 0.5 the axial
displacement is determined by eq. 2. Because of the
nearly linear variation with x, the axial displacement at
x/L = 0.5 would be approximately twice the value at x/Z
=(. As seen in fig. 2, for the elliptical cylinder, the axial

3

displacement response is not axisymmetric and is far
from being linear with x. Along the crown of the cylin-
der, s/C=0, the axial displacement is positive, while
along the side of the elliptical cylinder the axial dis-
placement is actually negative at certain axial locations.
Since the axial displacement changes signs with spatial
location, there are some locations besides x=-L/2 where
the axial displacement is zero. It should be noted, how-
ever, that the axial displacement at x/L=0 is practically
independent of s, as it is at x/L=0.5, and the axial dis-
placements at these locations differ by a factor of 2, as
they would for the circular case.

For balanced symmetric laminates, an inter-
nally pressurized circular cylinder has no circumferen-
tial displacement response. However, as shown in fig. 2,
the elliptical case shows circumferential movement
away from the sides and toward the crown and keel of
the cylinder, a response that clearly distinguishes an
elliptical cylinder from a circular one and one that has
consequences at the ends of the cylinder where displace-
ments are constrained to be zero. Figure 2 illustrates
another distinguishing difference between a circular and
elliptical cylinder. With internal pressure the normal
displacement of a circular cylinder is uniformly out-
ward. In contrast, under internal pressure the elliptical
cylinder moves outward at the crown and keel, but
moves inward at the sides. The cylinder tends to become
more circular. This also has important consequences at
the ends of the cylinder.

To demonstrate the influence of orthotropy, or
lamination sequence, circumferential strain is consid-
ered. As seen in fig. 3, particularly the upper left subfig-
ure, the degree to which the circumferential strain varies
with the s coordinate at the midspan is determined to a
large degree by the laminate considered. Recall, the cir-
cumferential strain for a circular cylinder has no varia-
tion with the s coordinate, independent of lamination
sequence. As seen in fig. 3, at midspan the circumferen-
tially-stiff laminate mitigates, to a certain degree, the
effect of ellipticity, as the strain does not vary much
with s there. The circumferential strain for the axially-
stiff and quasi-isotropic laminates varies more. There-
fore, it appears that unlike a circular cylinder, the per-
centage of fibers in the circumferential direction in an
elliptical cylinder controls the degree of variation with s
of the circumferential strain at midspan.

To demonstrate the influence of geometric
nonlinearities, circumferential curvature for the quasi-
isotropic case is considered. The differences between
linear and nonlinear analyses are easily visible in fig. 4.
In the midspan region for the nonlinear analysis case
there is a significant flattening along the crown of the
cylinder.
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Fai lys

In this section an evaluation of failure using the
Hashin and maximum stress failure criteria is presented
by considering geometrically linear and nonlinear analy-
ses and axially-stiff, quasi-isotropic, and circumferen-
tially-stiff cylinders. The failure criteria are used to
assess the mode of failure (e.g., tensile or compressive
fiber or matrix modes), the location of failure, and the
pressure at failure.

The Hashin and maximum stress failure criteria
are based on one-dimensional uniaxial and shear failure
stresses which are denoted as follows:

cr; = tensile failure stress in the fiber direction

o, = compressive failure stress in the fiber direction
(absolute value)

o; = tensile failure stress transverse to the fiber direc-
tion

oy = compressive failure stress transverse to the fiber
direction (absolute value)

1, = transverse failure shear stress
t, = axial failure shear stress

For graphite-epoxy typical values of the failure stresses
are:

g, = 1379 GPa oy = 50.0 MPa

o; = 200 MPa (10)
7 = 100.0 MPa

o; = 1241 GPa
7, = 100.0 MPa

The failure modes of the Hashin criterion can
be denoted as follows:

Tensile Fiber Mode: ;>0

2
(Q] + L+ o<t (1)

"
=7 T4

Compressive Fiber Mode: o, <0

iy 2
%4
Tensile Matrix Mode: 03,>0
02 (Op\?
[-—2-}) +(—23) + L(d); + o<1 (13)
or T

Compressive Matrix Mode: o,, <0

_\2
n|| 9T
o-;. [(2 TT)
Hence, the cylinder is assumed to be safe from failure if
all four left hand sides of eqs. 11-14 are less than unity,
and failure is assumed to have occurred if any one of the
four left hand sides equals unity. In the above the sub-
scripts 1, 2, and 3 on the stresses denote principle mate-
rial system stresses, conventional notation. The failure
modes of the maximum stress theory can be denoted as
follows:

Tensile Modes (oy,, 03, > 0):

Ip\: (T, 1,2 . 2
1]+(2—1-1) +(T:) + 56l ol <114
A

o, o.

e 21 15)
+ +

9y or

Compressive Modes (0y;, 03, <0):

Cugy Tz (16)
oy or
Shear Modes:

lﬁ""-l<l l2l<1 M<1 (1

r 7 T4

With this form of the failure criterion, the cylinder is
assumed to be safe from failure if all seven of the left
hand sides of eqs. 15-17 are less than unity, and failure
is assumed to occur if any one of the seven left hand
sides equals unity.

In order to make use of either failure criterion,
computation of the inplane and interlaminar shear
stresses in the principal material coordinate system are
necessary. The computation of the inplane stresses fol-
lows the standard approach of the classical lamination
theory [2]. Computation of the interlaminar stresses is
more complicated. For the geometrically linear case, the
equilibrium equations of elasticity were integrated
through the thickness of the cylinder wall to obtain
expressions for the interlaminar stresses. These stresses
were used in the failure analysis and were found to have
minimal influence on the failure predictions and could
have been ignored without introducing significant error.
The equilibrium equations of elasticity for the geometn-
cally nonlinear case are quite complex compared to the
linear case. Therefore, as an approximation, the inter-
laminar stresses for the geometrically nonlinear failure
analysis were computed from the geometrically linear
equations. In light of the minimal impact of the inter-
laminar stresses on the failure analysis, this approxima-
tion was felt to be justified.

To compute the predicted failure pressure
using the geometrically linear theory, the analyses were
conducted using an internal pressure p, of 0.690 MPa.

The lefthand sides of the two failure criteria were then
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evaluated as a function of axial, circumferential, and
through-thickness location within the cylinder wall. For
each criteria the left hand side that was closest to unity
identified the failure location and failure mode. The
pressure to cause failure was then determined by scaling
the 0.690 MPa.

Two issues were immediately obvious from the
linear failure analysis. First, as mentioned above, the
interlaminar stresses did not contribute to failure. The
interlaminar stress components were much smaller than
the inplane components, and although the interlaminar
failure stresses were small, the components contributed
little to the polynomials of the Hashin criterion and did
not play a role in the maximum stress criterion. Second,
both the Hashin and maximum stress criteria predicted
failure to be due to inplane matrix failure, i.c., matrix
cracking, due primarily to tensile stress perpendicular to
the fibers. Since matrix cracking is not generally cata-
strophic, it was felt important to look at other failure
conditions. Therefore, the pressure to cause fiber failure
was also computed. Ignored was any degradation in
properties due to matrix failure occurring before fiber
failure.

The upper quarter of table 1 summarizes the
findings of the linear analyses for the three laminates
and the Hashin failure criterion. The table shows the
failure pressure, pj; failure location, failure mode, and
the ratio of the bending component of the stress at the
failure location, o,, to the inplane component of stress
there, o, Both the matrix and fiber failures are consid-
ered. All failures occurred at two circumferential loca-
tions and both ends of the cylinder, though only one
location is listed in the table. As can be seen from the
upper left portion of the table, for the axially-stiff cylin-
der, matrix failure occurred at 0.896 MPa at the inner
interface of the inner layer, i.e., loc=1/1. In this particu-
lar instance the term ‘inner interface' is somewhat mis-
leading because there is no interface between layers at
the inner interface of layer 1, the inner +45° layer. The
inner interface of layer | is the inner radial location of
the cylinder wall. Circumferentially, the failure occurred
about one-third of the distance from the crown to the
side (8/C = -0.07, see fig. 1). The failure mode was fail-
ure due to high stresses perpendicular to the fibers in the
plane of the layer, i.e., 0». In this particular situation, the
component of o, due to bending effects was 3.3 times
larger than the component of o due to inplanc effects.
Since failure occurred at the ends of the cylinder, large
bending effects were to be expected due to the bending
boundary layers there. For fiber failure, a stress of
almost twice the level was required, 1.669 MPa, and the
mode of failure was compression in the fiber direction.
The failure occurred in layer 9, the outer layer, at inter-
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face 2, the outer interface, i.e., the outer radius of the
cylinder. This was a shift from the inside of the cylinder
for matrix failure to the outside for fiber failure. The
effect of bending was also reduced for the fiber failure.
The characteristics of the failure for the quasi-isotropic
cylinder were similar to those for the axially-stiff cylin-
der. The location of failure, the near-doubling of the
pressure to produce fiber failure, and the shift from an
inner location for matrix failure to an outer location for
fiber failure were all similar. The character of failure for
the circumferentially-stiff cylinder was somewhat dif-
ferent than the other two. The failure pressure for matrix
failure was lower, and the failure locations were differ-
ent. Matrix failure occurred in a layer outside the refer-
ence surface, layer 7, a 90 deg. layer, at the sides of the
cylinder, s/C = $£0.25. At that location bending effects
were not as important as inplane effects, as indicated by
the ratio of 0.33/1. An examination of the details of the
deformations of the ellipse (not shown) reveal that at the
crown and keel bending deformations are more pro-
nounced than at the sides, so the reduced role of bending
effects at the sides of the cylinder was not surprising.
Also, layer 7 was closer to the reference surface, a loca-
tion where there were less bending effects, than, say, at
layer 9. For fiber failure for the circumferentially-stiff
cylinder, fiber compressive failure was again the mode,
and this occurred at the outer radial location in layer 9, a
+45 deg. layer. The circumferential location was about
one-quarter of the distance from the crown to the side.

To compute the failure pressure using the geo-
metrically nonlinear analysis, iteration was be used,
each iteration using a different internal pressure. The
first step in the iteration process followed the failure
analysis for the geometrically linear case, namely, the
analysis was conducted for a pressure of p,=0.650 MPa.
Then, considering the maximum stress criterion as an
example, the seven left-hand sides of the failure crite-
rion were computed, and using p,=0.690 MPa the fail-
ure pressure, p; was computed by scaling. The
geometrically nonlinear analysis was then conducted
using this predicted failure pressure, i.c., now p, was the
failure pressure predicted from the first step. The seven
left-hand sides were again computed and were used to
compute a new failure pressure. This procedure was
repeated until the calculations were considered con-
verged to the failure pressure. A similar iteration proce-
dure was used for the Hashin criterion and the four left-
hand sides in that criterion.

The second quarter of table 1 summarizes the
findings of the nonlinear analyses for the three lami-
nates and the Hashin failure criterion. Considering the
axially-stiff case, it is seen that relative to the geometri-
cally linear analyses, geometric nonlinearities led to
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slightly higher failure pressures, e.g., for matrix failure
0.931 MPa vs. 0.896 MPa. As in the linear case, for
matrix failure the tensile stress component o, was

responsible for failure, and for fiber failure, a compres-
sive o; was responsible. For both matrix and fiber fail-

ure the through-thickness locations were identical to the
linear case and the circumferential location of failure
moved just slightly away from the crown. The ratio of
the bending component of stress to the inplane compo-
nent was slightly lower for the geometrically nonlinear
case. This was felt to be due to the flatten effect caused
by geometric nonlinearities. The comments for the axi-
ally-stiff cylinder apply to the quasi-isotropic cylinder.
Regarding the circumferentially-stiff case: although
geometric nonlinearities did not appear to significantly
influence matrix failure, they did influence fiber failure
predictions. The predicted mode changed from fiber
compression for the linear analysis to fiber tension for
the nonlinear analysis. Additionally, the location for the
nonlinear analysis was near the sides as opposed to
being in the crown area. The reason that the linear and
nonlinear analyses did not agree for the fiber failure
condition is that in the Hashin criterion for tensile fiber
failure the shear stress 1;, is involved. For the nonlinear

analysis the value of r;, was greater than for the linear
analysis and the values of tensile o; and 7;, near the

side of the cylinder outweighed the high value of fiber
compression stress in the crown region.

The bottom half of table 1 is a summary of
using the maximum stress criterion to predict failure. An
examination of the maximum stress criterion prediction
reveals that many entries are similar, if not identical, to
the Hashin criterion prediction. For the matrix failure
the stress component o, was so dominant that the

Hashin criterion reduced, in effect, to the maximum
stress criterion. The additional terms in the Hashin crite-
rion had little influence. For fiber compression failure
the Hashin criterion is identical to the maximum stress
criterion, so the entries would be identical in those
cases. The primary difference occurred with fiber failure
for the circumferentially-stiff cylinder. Whereas with
the nonlinear analysis the Hashin criterion predicted
fiber tensile failure at the outer radial location near the
sides, for the reasons discussed above, the maximum
stress criterion prediction was similar to the linear anal-
yses for both the Hashin and maximum stress criteria,
namely fiber compression at the outer radial location in
the crown region.

A comment is in order regarding the failures
occurring in the +45° layers. First, these layers are at the
extreme inner and outer locations, so bending effects are
most severe at these locations. However, another factor
influences the +45° layers. In fig. 2 it was seen that with
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the elliptical geometry there is a tendency to have a cir-
cumferential displacement component v°. However, at
the ends v° is restrained to be zero, requiring an inplane
shear force resultant N,, to achieve this. The transfor-
mation of the shear effect of N, into the principal mate-

rial directions of the £45° layer leads directly to a stress
component ¢;. This adds to the magnitude of o3 in these

off-axis layers. Interestingly, N, is zero at +/C =0, 0.25,
0.5, and 0.75, and has extreme values roughly halfway
between these circumferential locations.

| View of Failure Predicti

With composite materials there is often scatter
in the results of tests designed to determine failure
stresses. Considering the failure stress of a composite
material to be exactly a certain level is somewhat unre-
alistic. The scatter is due to small unpredictable irregu-
larities in the microstructure of composites and possible
anomalies in the manufacturing process. As a result, the
location with the highest stress may not fail first. A
slightly lower stress at another location, coupled with a
microstructural irregularity, could lead to lower failure
stress levels. To that end, the geometrically nonlinear
failure analysis was used to compute the locations
within the ellipse where the seven left-hand sides in the
Hashin failure criterion were within 20% of the failure
level, i.e., the left-hand sides of egs. 11-14 were in the
range 0.80 to 1.00, with 1.00 corresponding to the cases
discussed in table 1.

Figures 5 through 7 show the locations where
the Hashin failure criterion is within 20% of equaling
unity for the axially-stiff, quasi-isotropic, and circum-
ferentially-stiff laminates, respectively. The location of
first failure, i.e, matrix failure from table 1, is also
shown. The stresses were evaluated using nonlinear
analysis at the matrix failure pressure, ps In each figure

a greatly distorted view of the crown section of the cyl-
inder wall through the thickness from -0.5 < {/H £ 0.5
and around the circumference from -0.25 < s/C £ 0.25
provides a visual display of the points within 20% of
failure. It is important to note that all these points are at
the clamped end of the cylinder, x/L = 0.50.

Referring to fig. 5 and, as indicated in the table,
the maximum left-hand side value, or initial failure
point, for the axially-stiff case is located at the first
layer, a +45° layer, at the inner radial location of the cyl-
inder at &/C=-0.09. Considering points where the left-
hand side is less than 1.00, the points are dispersed cir-
cumferentially on both sides of the initial failure point in
the first layer at the inner radial location. There are also
points on both sides of the interface between the first
and second layers. An alternative interpretation of the
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spatial distribution of the points is that if the pressure is
increased beyond the value to predict failure at point 1,
then there will be failure at another location. Further
increases in pressure would lead to failure at other loca-
tions. It is felt that the geometric distribution of points
would represent the progression of damage as the pres-
sure increases beyond the value necessary to have the
Hashin criteria to equal 1.00. If this interpretation is cor-
rect, then, matrix cracking will accumulate in layer 1 at
the inner radial location ({/H=-0.5) in the range -0.16 <
8/C 0. There will also be cracking in layer 2 at the
interface between the 1st and 2nd layers ({/H=-0.389).
All these failures would be due to high values of 0.

Figure 6 shows a very similar interpretation for
the quasi-isotropic case, though there are some failures
at outer radial locations (+45° layer). The circumferen-
tially-stiff case in fig. 7 is different. Using the ‘progres-
sion of damage’ interpretation of the locations of the
points, it is seen failure spreads from the two initial
points at the sides and moves toward the crown (C=0)
along the interfaces between layers 6, 7, and 8, and at
the outer radial location. Several issues must be kept in
mind when considering figs. 5 through 7. First, it could
be that properly accounting for material degradation due
to matrix cracking would result in even greater spread of
the locations. The reduction of stiffness due to matrix
cracking could cause stresses to increase in nearby loca-
tions, thereby enhancing failure. Also, as stated, the
locations shown in figs. 5 through 7 are at the ends of
the cylinder (x/L. = 10.50). At some point failure will
progress axially as well as circumferentially. Properly
accounting for material degradation may show this hap-
pens before there is a significant circumferential pro-
gression. Finally, the Hashin criterion or any criterion
for that matter, reaches unity at the inner or outer radial
location of a particular layer. This is because for every
layer the bending strains vary linearly with thickness
and thus take on extreme values at the inner and outer
radial locations, never at midlayer locations. However,
even though the stresses are the highest at the inner or
outer radial location and lead to failure there, failure
probably propagates through the entire thickness of the
layer. Thus, the matrix failure at the locations shown in
fig. 5, for example, really represent a crack through the
thickness of the layer. For the condition shown in fig. 5,
this means there are matrix cracks through the two inner
layers. The internal pressure is thus developing a leak-
age path through the thickness of the wall. Also, crack
mechanics may well change because the internal pres-
sure is acting on the crack faces. This may lead to fur-
ther cracking, such as crack turning at the interfaces. If,
however, an internal bladder or sealant is used, the sce-
nario is likely different.
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Finally, it is important to take note of the fact
that the matrix and fiber failures in table 1, and the scat-
tering of points in figs. 5-7, are associated with particu-
lar circumferential locations. This is, of course, because
the stresses vary with circumferential position. In effect,
there is a stress concentration as the cylinder is traversed
in the circumferential direction. As a result, the cylinder
will be prone to fail at a particular circumferential loca-
tion. In contrast, the circumferential location of failure
of a circular cylinder would depend totally on the loca-
tion of material imperfections. So on the one hand an
elliptical cylinder is a disadvantage because of the pres-
ence of a stress concentration, but on the other hand, it
can be determined where strengthening should be
applied to increase the failure pressure.
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Table 1. Failure pressure, location, and mode for elliptical graphite-epoxy cylinders, geometrically linear and

nonlinear analyses, two failure modes, two failure criteria

Axially-Stiff Quasi-isotropic Circumferentiaily-Stiff
Matrix Fiber Matrix Fiber Matrix Fiber
p MPa | 0.896 1.669 0.903 1.579 0.738 1.551
loc* 11 (+45) 9/2 (+45) 1/1 (+45) 8/2 (+45) 712 (90) 9/2 (+45)
_ s/C* 0.07 0.08 0.07 0.07 $0.25 .06
-]
é mode *0'2 G4 +G7 -0y *02 a4
£ o /o, 3.3/ 1.251 an 1.31 0.33/1 1.251
8 S
I P MPa | 0.931 1.862 0.924 1.800 0.724 1.710
= loc* 1/1 (+45) 972 (+45) 1/1 (+45) 8/2 (+45) 712 (80) 9/2 (+45)
[ 3
£ Y o 0.09 0.11 0.10 0.10 $0.25 0.24
g mode +0y -0y +0; -Gy +ay +a4
o,/o, 2.7 1.21 2.21 1.21 0.381 0.58/1
0
pnMPa | 0.938 1.668 0.938 1.579 0.738 1.572
foc* 14 (+45) 9/2 (+45) 1/ (+45) 8/2 (+45) 7/2 (90) 8/2 (+45)
- s/Cc 0.07 0.08 0.08 0.07 +0.25 -0.08
«
g g mode +a2 -0y +02 a4 +02 -0y
o/o, 331 1.251 2.86/1 1.31 0.33/1 1.25/1
g ——3r—
% ps MPa | 0.965 1.862 0.958 1.800 0.724 1.834
E ; foc* 1/1 +45) 972 (+45) 111 (+45) 8/2 (+45) 712 90) 9/2 (+45)
'§ C -0.09 0.1 0.10 0.10 $0.25 0.09
c
mode +0; -4 +0; -y +a; -0y
oo, 2.31 1.21 2.21 1.21 0.38/1 1.28/1

* Location is given as layer number/interface, where 1 is the inner-most layer and 1 denotes the inner and 2 the outer interface.
The fiber direction of the layer is shown in parenthesis. 0° is the axial direction.
* All failures occur at the ends of the cylinders: s/C=0 is crown, 8/C=10.25 are sides, C=circumference, s=arclength measure
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2a = major diameter
2b = minor diameter
e = b/a = ellipticity
C = circumference

Figure 2. Effect of elliptical geometry on the displacements of an elliptical cylinder.
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0.2 1 —— quaskisotropic @ xA = 0.0
: —-— axisity-stff @ xA. = 0.0

— -~ circumferentially-s#ff @ XA = 0.0 {[

Figure 4. Effect of geometric nonlinearities on the circumferential curvature.
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Figure 6. Points within 20% of failure criterion equaling unity, quasi-isotropic
laminate, nonlinear analysis, x/1.=0.5, Hashin criterion
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Figure 7. Points within 20% of failure criterion equaling unity, circamferentially-stiff laminate,
nonlinear analysis, x/L~=0.5, Hashin criterion

11
American Institute of Aeronautics and Astronautics



CENTER FOR CCMS-99-09
CoMPOSITE MATERIALS
AND STRUCTURES

Q

0]

Response and Failure of Internally
Pressurized Elliptical Composite Cylinders

J. M. McMurray and M. W. Hyer

BLACKSBURG , VIRGINIA
.... = 24061

0 September 1999




RESPONSE AND FAILURE OF INTERNALLY PRESSURIZED
ELLIPTICAL COMPOSITE CYLINDERS

Jennifer M. McMurray
Michael W. Hyer

Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg VA 24061

Sponsoring Agency:
National Aeronautics and Space Administration
Langley Research Center
Structural Mechanics Branch

September 1999

© 1999 J. M. McMurray



ABSTRACT

Presented is an overview of a semi-analytical solution which was developed to study the
response of internally pressurized elliptical composite cylinders with clamped boundaries. Using
a geometrically linear analysis and the solution scheme, the response of a quasi-isotropic elliptical
cylinder is compared with the response of a quasi-isotropic circular cylinder in order to study the
effects of elliptical geometry. The distinguishing features of the response of an elliptical cylinder
are the inward normal displacement at the ends of the major diameter that occur despite the out-
ward force of the internal pressure, the presence of circumferential displacements, and the pres-
ence of inplane shear strains. These effects lead to spatial variations, including sign reversals, of a
number of displacement, strain, and curvature responses. The responses of a quasi-isotropic ellip-
tical cylinder evaluated using a geometrically linear analysis are then compared to the responses
evaluated using a geometrically nonlinear analysis. It is shown that geometric nonlinearities tend
to flatten certain responses in the crown region, and reduce the magnitude of certain responses in
the boundary region. To study the influence of material orthotropy, the responses of axially-stiff
and circumferentially-stiff elliptical cylinders evaluated using geometrically nonlinear analyses
are examined. It is shown that in some instances material orthotropy can be used to mitigate the
influence of the elliptical geometry and make particular responses look like those of a circular
cylinder. An evaluation of failure using the maximum stress and Hashin failure criteria and geo-
metrically linear and nonlinear analyses is presented for elliptical cylinders. These failure criteria
involve interlaminar shear stresses which are computed by integrating the equilibrium equations
of elasticity through the thickness of the cylinder wall. The failure criteria are used to assess the
mode of failure (e.g., tensile or compressive fiber or matrix modes), the location of failure, and

the pressure at failure. Both criteria predict first failure to occur at the clamped boundaries



because of matrix cracking due to stresses in the plane of the cylinder wall. The predicted failure
pressures and circumferential locations are very similar for the two criteria, and the nonlinear
analyses predict slightly higher pressures at somewhat different circumferential locations. First
fiber failure is also considered. For this failure the two criteria predict similar failure scenarios for
the linear analyses, but they differ in their predictions for the nonlinear analyses. Specifically,
using the maximum stress criterion, the circumferentially-stiff elliptical cylinder is predicted to
fail due to fiber compression, but the Hashin criterion predicts failure to be due to fiber tension,
and at a different circumferential location. Also, first fiber failure pressures are at least a factor of

two greater than the first matrix failure pressure.

Keywords: geometrically nonlinear effects, influence of orthotropy, influence of elliptical geome-

try, internal pressure, maximum stress failure theory, Hashin failure theory
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Chapter 1 Introduction

Due to their high specific strength and stiffness properties, fiber-reinforced thin-walled
composite cylinders have numerous applications in the aerospace industry as structural elements.
Although circular cylinders are most commonly used and studied, future transport fuselages could
have noncircular cross sections, in particular, oval or elliptical cross sections. A noncircular
cross section could be beneficial for blended wing-fuselage structural concepts, improved aerody-
namics, and increased payload capacity. A number of issues associated with noncircular cross sec-
tions must be addressed. These issues include the effect of noncircular geometry, geometric
nonlinearities, boundary conditions, loading, and material orthotropy. This study is concerned
with internal pressurization, which is an important loading for fuselage structures, and cylinders
with elliptical cross sections. There are a number of fundamental issues with this particular load-
ing. For example, a circular cylinder subjected to internal pressure expands outward, whereas, an
elliptical cylinder becomes more circular in shape, as shown in fig. 1-1. For an elliptical cylinder,
deflections are actually inward at certain circumferential locations. Additionally, with internal
pressure there is a net axial force on each end of the cylinder. Assumptions regarding how this
force is reacted by the cylinder have an impact on the assumed conditions at the boundary. These
concerns are addressed in the present study by using a semi-analytical approach to obtain numeri-
cal results. These results are then used to illustrate the differences between a circular and elliptical
cross section cylinders, and geometrically linear and nonlinear effects. Also, the influence of

orthotropy is discussed, specifically, quasi-isotropic, axially-stiff, and circumferentially-stiff
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graphite-epoxy laminates are considered. Failure is addressed. The semi-analytical approach,
developed in a previous study [1], utilizes the Kantorovich and finite-difference techniques to
solve the governing equations. A description of the details of the specific problem and of the
semi-analytical approach is described in the next two sections. The following section outlines the

contents of the remainder of this document.

Figure 1-1. Effect of internal pressure on cross-sectional deformation of an ellipse.

1.1 Problem Description

The problem considered consists of a cylinder described in fig. 1-2, with a, b, and L denot-
ing, respectively, the semi-major diameter, semi-minor diameter, and axial length of the cylinder
reference surface. The degree of ellipticity, e, is defined here as the ratio of the semi-minor and
major diameters, b/a. Alternatively, b/a can be thought of as the cross-sections aspect ratio. The
cylinders considered here are symmetrically laminated and have an ellipticity of 0.7 and 1.0, the
latter corresponding to a circular cylinder. The wall thickness of the cylinder is denoted by H and

the internal pressure by p,. The upper part of the cross-section is referred to as the crown, the

lower part as the keel, and the sides are referred to as the sides.

2 Introduction



x
wD
% / i crown
W
y
sid 2b
keel
2a
” 2a = major diameter
H n I / 2b = minor diameter
%ckness) (Length) e = b/a = ellipticity
C = circumference

Figure 1-2. Problem description, nomenclature, and geometry of an elliptical cylinder.

The cross sectional shape of the cylinder at the reference surface, or midwall location, is

an ellipse lying in the global y-z plane described by

= 1. (1.1)

The maximum and minimum radii of curvature are

a’ b’

b a
which occur at the ends of the semi-minor and -major axes, respectively. Locations on the refer-
ence surface are identified by coordinates (x,s), where x is the axial coordinate, measured from the

midspan location, and s is the circumferential arc-length coordinate, measured counterclockwise

from the top, or crown, of the cylinder. The reference surface displacement in the axial and cir-

cumferential directions are denoted as ¥°(x,s) and v°(x,s), respectively, while the normal displace-
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ment is denoted by w°(x,s). Herein, only thin cylinders are discussed, and the orientation of the
layers is defined relative to the +x axis in the laminate nomenclature. Here it will be assumed the
cylinder ends are clamped to a rigid end plate or bulkhead which can move axially. Accordingly,
clamped-clamped boundary conditions are applied to each end of the cylinder, with the exception
of allowing the end at x = +L/2 end to expand uniformly in the axial direction with displacement
4. The end at x = -L/2 cannot move axially in order to restrict axial rigid body translation. For-

mally, the boundary conditions at the ends of the cylinder (x = £L/2) are as follows:

i)u°=0@x=.§u0=4@x=+§

ii) v =0 13

iii) we = 0 a3
avo

iv) 2~ = 0.

iv) x

The end displacement 4 is determined by enforcing axial equilibrium of the end enclosure at x =

+L/2, namely,

Jj N ds = p_ rmab, (1.4)
where N, is the axial force resultant within the cylinder (to be defined shortly), C is the circumfer-

ence of the cylinder reference surface, and the cross-sectional area of the ellipse is zuab. Physi-
cally, eq. 1.4 states that the net axial force due to the internal pressure times the cross-sectional

area of the end enclosure must be balanced by the net axial force due to the axial force resultant.

1.2 Solution Approach

The semi-analytical solution procedure begins with the expression for the total potential

energy of the cylinder. The total potential energy is given by
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T = l”]‘[axgx + 0,8 + 1.7, Jdxdsd{ - ”powodxds, (1.5)

where ¢ is the local through-thickness coordinate within the cylinder wall. The coordinate ¢
ranges from -H/2 < {'< +H/2 and is zero at the reference surface. Of course the axial coordinate
has the limits from -L/2 < x < +L/2, and the circumferential coordinate has the limits from 0 < s <
C. As evidenced by the integrand in eq. 1.5, the plane-stress assumption is being used. The strains

in the energy expression are given by

O [«]
g, = & t (K,
] [
£ = & + (K, 1.6)

where the reference surface strains and curvatures are related to the reference surface displace-

ments by
o _ o’ 1w’
A ®
o _ o, w 1w :
% " 75 +R(s)+2(d' ®
o _ou® &° av“) v
Aeg o w B E ©
an
o
0 7 = @
éx
o
x: _5?w )
2
&
0 I’
= 22¥
Kes X ®

Note that the radius of curvature being a function of s in &, is what makes this problem different

than that of a circular cylinder. The underlined terms in eq. 1.7ac denote the geometric nonlinear-
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ities. These are the von Karman approximations to the fully nonlinear strain-displacement rela-
tions. Substituting eq. 1.6 into eq. 1.5 and integrating the energy expression through the thickness

of the cylinder wall results in

X xs xs$

1
=5 ”'[Nxa: +N,& + N 70, + MKk, + Myx + M x5 —pw’ ldxds  (a)
(1.8)
= [[UCGs, s)xds, ®
where eq. 1.8b serves as the reminder that the integrand is strictly a function of x and s. The force

and moment resultants in eq. 1.8 are defined by

N, = [0, d¢ = 4;,6,+ 4,56
N, = [od¢ = A6 + AyeE]
Ny, = [r,df =4 667 os 0o
M, = [0,0d¢ =D, 5+ Do) + Dk '
M, = ja_,é’d{ =D,k + Dzzx; + D 6K
My, = [5,6d¢ =D gx; + Dygiig + Dgg, .
where, as seen from the form of eq. 1.9, only symmetric and balanced laminates [2] are being con-
sidered.
With the radius of curvature varying circumferentially, a closed-form solution to the prob-
lem is not easily found. Accordingly, an approximate solution is sought. To begin the approximate

solution, the circumferential variation of the radius of curvature is expanded, in a method sug-

gested by Marguerre [3], in a cosine series such that,

1

I
= a,.cos(4ins/C), (1.10)
R(s) ,-Z:g 4i (
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where the coefficients a,; are constants which depend on the specific cross-sectional geometry
(semi-diameters a and b) and [ is the number of terms needed to properly represent the variation
of the inverse radius of curvature. The dependence of the reference surface displacements on the
circumferential coordinate is approximated using the Kantorovich method by a harmonic series in

a form inspired by the inverse radius of curvature, namely,

N M
¥’ (x, 5) = uz(x) + Z u:(x)cos(4n7rs/C) + u:,+m(x)sin(4m7rs/C)
n=1 m=1
M
Vo(x, s) = vZ(x) + Y v;(x)cos(4mn's/C) + ) le+n(x)sin(4n7rs/C) Q.11
m=1 n=1
N M
wo(x, 5) = wZ(x) + Z wz(x)cos(4n7zs/C) + WK/ + m(X)sin(4mzns/C).
n=1 m=1

Both sines and cosines are used to represent all three displacement components, where M and N

determine the number of terms of each. For an isotropic cylinder, sine terms would not be neces-

sary for u°(x,s) and w°(x,s), while cosine terms would not be necessary for V°(x,s). The presence
of the bending stiffness terms D ;4 and D,4 makes inclusion of these terms necessary.

With eq. 1.10 and eq. 1.11, the displacements and the radius of curvature have been
explicitly expressed in terms of the circumferential coordinate, s. Substituting the displacements
of eq. 1.11 into the strains and curvatures of eq. 1.7, and the stress and moment resultants of eq.
1.9 into the energy expression of eq. 1.8, integration of the energy expression can be performed
with respect to s. The integrand of the energy expression is then dependent on the coefficients in
eq. 1.11, which are only a function of x. As a result, the energy expression can be written symbol-

ically as
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+é C
2
T - I_L Uo U(x,s)ds]dx
2 (1.12)
+L

- [ RO e i = L3EME D)

2

In the above the y; (x) represent the functional coefficients in eq. 1.11 and ()’ represents differen-

tiation with respect to the axial coordinate x. Although the integrand above is also a function of
cylinder geometry, material properties, and the pressure, they are constants that are not involved
in the variational process. Equating the first variation of the total potential energy to zero results

in the Euler-Lagrange equations for the y;(x) and the associated variationally consistent boundary

conditions at x = #L/2. In general terms, the Euler-Lagrange equations are

2
4O ) _4(0F) OF _
W T de 1 - (1.13)
dx2 i) dx yi) ayi

and the boundary conditions are

¥, specified or E" =0
oy,
(1.14)
i d(oF oF
. specified or or Y_of _ g
yl p dx y‘ll) ay"

The boundary conditions of eq. 1.3 translate into specifying values of y;(x) and y;’(x). Defining

intermediate variables in order to reduce the system from a third-order to a first-order form, it is

possible to obtain a set of coupled nonlinear first-order ordinary differential equations of the form

yi(x) = £0,/()) Lj=1L8N+M+1), (1.15)

where

§:(x) = {up Ve We Qi T 1y 81 ) k=1,80N+M+1) (1.16)

and

8 Introduction



=d_“’: , _ dq; dr, duy

3 dv:
i

¢4 dx ’ L I = ix’ & = x’ h,

(1.17)

This process has been automated using the symbolic manipulation package Mathematica®[4).

The resulting differential equations in x are written into FORTRAN code using the FORTRANAS-

SIGN package within Mathematica®. These equations are integrated by the finite-difference
method using the IMSL subroutine DBVPFD [5] which is based on a variable-order, vari-
able-step-size algorithm employing Newton’s method. By rendering the governing
Euler-Lagrange equations to first-order form, as in eq. 1.17, various derivatives of ¥°, v°, and w’°
are directly available for computing reference surface strains and curvatures and force and

moment resultants. More importantly, stresses as a function of x, s, and ¢ can be computed.

1.3 Remainder of Document

In the following chapters, using numerical results, a thorough explanation will be given of
the effects of cylinder geometry, specifically circular vs. elliptical cross sections, and geometric
nonlinearities on cylinder responses. Also, the effects of orthotropy will be studied using
quasi-isotropic, axially-stiff, and circumferentially-stiff graphite-epoxy laminates. Displacements,
reference surface strains and curvatures, and force and moment resultants will be used to define
cylinder responses. A comparison of these cylinder responses will be made with finite-element
analysis to verify the numerical results. These discussions will take place in chapters 2, 3 and 4. In
chapters 5 and 6, two failure theories, the Hashin failure theory and the maximum stress theory,
will be used to assess the pressure capacity of elliptical composite cylinders. Interlaminar shear
stresses are considered by integrating the geometrically linear equilibrium equations of elasticity

in polar coordinates through the thickness at the cylinder wall. These interlaminar shear stresses
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together with the inplane (intralaminar) stresses are used in the failure theories. Failure pressure
levels, failure location, and failure modes are studied. Finally, conclusions of this work will be

presented, and future directions discussed.
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Chapter 2 Effect of Elliptical Geometry on Cylinder Response

This chapter addresses the influences of ellipticity by using the semi-analytical scheme

described in the previous chapter.

2.1 Numerical Values of Problem Parameters

Though ultimate interest with elliptical cylinders is for application to aircraft fuselage
structures, initial experimental work will take place with small scale cylinders. The displacement,
strain, and stress response of these smaller cylinders must be understood before studies of
scaled-up cylinders can commence. To that end, in the present study numerical results will be
shown for eight and nine layer graphite-epoxy cylinders with semi-major diameters of 5 in., ellip-

ticities of 0.7, and lengths of 12.5 in. The material and geometric properties of a layer of graph-

ite-epoxy are taken to be
E, = 1885 Msi E, = 1407 Msi
@n
G,, = 0.725 Msi v;, = 0.300 h = 0.0055 in.

where A is the thickness of a single layer. The laminates considered are: quasi-isotropic,
[£45/0/90]5; axially-stiff, [+45/0,/90y]s; circumferentially-stiff, [+45/90,/0y]s, where O degrees
is along the axial direction. These lay-ups were selected because each has at least one layer with
its fibers in the axial direction, at least one layer with its fibers in the circumferential direction,
and +45 degree layers. Eight or nine layers is a reasonable number from the point of view of man-

ufacturing the cylinders by hand on elliptical mandrels.
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The inverse radius of curvature of eq. 1.10 requires /=7 for convergence of the cosine
series with the exact solution, as shown in fig. 2-1. In fig. 2-1 the vertical axis represents the error
when using the series of eq. 1.10, and it is seen that I=7 results in minimal error at all circumfer-

ential locations.
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Figure 2-1. Convergence study for the inverse radius of curvature.

Accordingly, the three displacement series of eq. 1.11 require N=7 and M=4 for convergence of

the displacements and force resultants. The displacement series is expanded as follows
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1u°(x,5) = u%(x) + u° (x)cos(dns/C) + u° {x)cos(8xrs/C) + u° y(x)cos(12ns/C) + u° {x)cos(16xs/C)
+ u°5(x)c0s(2075/C) + u°g(x)cos(245/C) + u° Ax)cos(28 x5/C)
+ w0 g(x)sin(dns/C) + ug(x)sin(8xs/C) + u°o(x)sin(12xs/C) + u® (x)sin(16xs/C)

VO(x,5) = V2 (x) + V2 ;(x)cos(4rs/C) + V° Ax)cos(8xs/C) + v 5(x)cos(12ns/C) + V° fx)cos(16ns/C)
+ V2 (x)sin(4xs/C) + V°(x)sin(815/C) + v° Ax)sin(12x3/C) 2.2)
+ V24 (x)sin(16ms/C) + VPo(x)sin(20ms/C) + v°o(x)sin(24ns/C) + v°1(x)sin(28xs/C)

wo(x,5) = wPi(x) + W, (x)cos(dxs/C) + w° Jx)cos(8ns/C) + w®s(x)cos(12xs/C) + w° x)cos(16xs/C)
+ w2 5(x)cos(20ms/C) + wog(x)cos(24ns/C) + w° Ax)cos(28xs/C)
+ wog(x)sin(dns/C) + woo(x)sin(8xs/C) + w° 1o(x)sin(12xs/C) + w°(x)sin(16xs/C).

Further details regarding convergence can be found in ref. 1.

2.2 Displacements

In order to demonstrate the Basic responses of an elliptical cylinder subjected to internal
pressure, a comparison is made with circular cylinders. For this comparison a quasi-isotropic lam-
inate is chosen and a geometrically linear analysis is used. The basic cylinder responses consid-
ered are reference surface displacements, reference surface strains and curvatures, and force and
moment resultants. Figure 2-2a-f illustrates axial, circumferential, and normal displacements as a
function of the axial and circumferential coordinates. The displacements have been normalized by
the laminate thickness H. An internal pressure of p,=100 psi is used to compute the results in
these figures. The format of the fig. 2-2a-f illustrates the response of one-eighth of the cylinder.
The coordinate locations have been normalized and, referring to fig. 1-2, the range of 0 < x/L <
0.5 and 0 < &/C < 0.25 is considered. Due to the presence of D¢ and D4, the problem does not
exhibit octal symmetry. However looking at only one eighth of the cylinder provides a fairly accu-

rate detailing of the response, and simplifies displaying the results. Implementing symmetry and
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antisymmetry arguments for various responses, the response for the remainder of the cylinder can
be envisioned.

Regarding the axial displacement of fig. 2-2a-b, for an intemnally pressurized cylinder the
axial displacement is the net result of the pressure forcing the end enclosures apart and the Pois-
son effect due to circumferential expansion pulling them together. For a circular cylinder, this
results in a nearly linear axial displacement with the axial coordinate. Since the internal pressure
problem for a circular cylinder is axisymmetric, the axial displacement does not vary with s.
Recall from the boundary conditions of eq. 1.3 that the axial displacement is zero at x’Z = -0.5,
and at x/L = 0.5 the axial displacement is determined by eq. 1.4. Because of the nearly linear vari-
ation with x, the axial displacement at x/L = 0.5 is approximately twice the value at x/Z = 0. As for
the elliptical cylinder, the internal pressure problem is not axisymmetric, and the axial displace-
ment is far from being linear with x. For the elliptical cylinder notice that along the crown of the
cylinder, s/C=0, the axial displacement is positive, while along the side of the elliptical cylinder
the axial displacement is actually negative at certain axial locations. Since the axial displacement
changes signs with spatial location, there are some locations besides x=-L/2 where the axial dis-
placement is zero. This is not a situation that appears in the circular case. It should be noted, how-
ever, that the axial displacement at x/Z=0 is practically independent of s, as it is at x/Z=0.5, and
the axial displacements at these locations differ by a factor of 2, as they do for the circular case.

Figure 2-2c-d illustrates the circumferential displacement, a response that clearly distin-
guishes an elliptical cylinder from a circular cylinder. An internally pressurized circular cylinder
has no circumferential displacement response for balanced symmetric laminates. However, the
elliptical case shows circumferential movement away from the sides and toward the crown and

keel of the cylinder. Figure 2-2¢-f illustrates another distinguishing difference between a circular

14 Effect of Elliptical Geometry on Cylinder Response



and elliptical cylinder, as was mentioned in connection with fig. 1-1. The normal displacement of
a circular cylinder is uniformly outward. In contrast, for the elliptical case the cylinder tends to
become more circular. The elliptical cylinder under internal pressure moves outward at the
crown and keel, but moves inward at the sides. As will be seen, this has important consequences

at the ends of the cylinder.
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s,

CY)

o<

©

o€

©

Elliptical

ol N

®)

N

LR
W
AR

s BN

@

Figure 2-2. Influence of ellipticity on the displacements of a quasi-isotropic cylinder.
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2.3 Strains and Curvatures

A comparison of reference surface strains in circular and elliptical cylinders provides a
further demonstration on the influence of geometry on responses. In fig. 2-3a-f normalized refer-
ence surface strains are compared. Note that from here forward all normalized terms are denoted
by an overbar. The normalization factor for the strains is the circumferential reference surface

midspan strain in an internally pressurized quasi-isotropic circular cylinder, namely,

1

Aj-341

—7 PR, 23)
Ay 454

where the 4;;s for a quasi-isotropic laminate are used. As a result of this normalization, the pres-
sure level used in the calculations does not influence the magnitudes of the responses shown in
the figures.

The circumferential strain, £°,, shown in fig. 2-3a-b, varies considerably with both axial

and circumferential locations for the elliptical case, whereas, the circumferential strains for the
circular cylinder vary only with axial location and only near the ends. This behavior for all
ellipses can be explained by studying the relationship between circumferential strain and dis-

placements in eq. 1.7b. As seen in that equation, the inverse radius of curvature and the change in
v? with respect to circumferential location determine the behavior of circumferential strain. In the

circular case v is zero, and therefore does not change with respect to circumferential or axial

location, and the inverse radius of curvature is constant with s. The circumferential strain is deter-

mined solely by the inverse radius of curvature term. In the elliptical case, v* and the inverse
radius of curvature change significantly with respect to circumferential location and result in the

behavior in fig. 2-3b. For the elliptical case, except for the cylinder ends, there is no location

Effect of Elliptical Geometry on Cylinder Response 17



where the circumferential strain is zero, and it changes sign and magnitude with location The cir-

cumferential strain is zero at the ends due to boundary condition on v* and w° given in eq. 1.3.
The axial strain, £, shown in fig. 2-3c-d, shows behavior similar to the circumferential

strain. For instance, in the circular case the midspan regions exhibit uniform strains, and in the

elliptical case the strains vary with both axial and circumferential locations, and, in fact, change

sign. However, the driving force behind these similar behaviors is due to a different displacement.
The relationship between axial strain and displacements is shown in eq. 1.7a as the change in u°
with respect to axial location. In the circular case, 4° does change with respect to axial location,
but the change is nearly linear, resulting in a uniform axial strain in the midspan region. For the
elliptical case, #° also changes with respect to axial location, but the change is nowhere near lin-
ear and therefore the axial strain, shown in fig. 2-3d, is not uniform.

The shear strain, °,,, shown in fig. 2-3e-f, varies considerably with the axial and circum-

ferential location for the elliptical case, while the shear strain for the circular case is zero. The

relationship between shear strain and displacements is shown in eq. 1.7¢ to be dependent on the

change in ¥° with respect to circumferential location and the change in v° with respect to axial
location. As a result, the shear strain for elliptical cylinder varies significantly with both circum-
ferential and axial location. The presence of shear strain is another distinguishing feature of the
elliptical cylinder. Note also that the shear strain in an ellipse is as large, or larger, than the other

two strain components.
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Comparisons of circumferential, axial, and twist curvatures, x°,, x°,, and x°,, respec-
tively, for circular and elliptical cylinders are also necessary to demonstrate the influence of ellip-
ticity on responses. To make the curvatures comparable to the previous figures involving the
strains, the curvatures are converted to normalized strain measures by multiplying them by H/2
and then dividing this result by the quantity in eq. 2.3. The result is the normalized strain that
would occur at the outer surface of the cylinder due to the curvature. (Note that by multiplying the
curvature by -H/2, the strain that would occur at the inner surface of the cylinder due to the curva-

ture can be computed.)

The curvatures, shown in fig. 2-4a-f, are strictly a function of normal displacement, w°,
and how it varies with the x and s coordinates, as given by the last three expressions of eq. 1.7.
The magnitudes of the curvatures are notable because the axial curvature is an order of magnitude
greater than the circumferential or twist curvatures. Due to the uniform outward normal expansion

and a lack of variation with the s coordinate, the circular cylinder has zero circumferential and

twist curvatures. The boundary conditions on w?, from eq. 1.3, causes w° to have a gradient in the
x direction. Thus the axial curvature shows a variation with x for the circular cylinder.

In contrast, the elliptical cylinder does not have uniform outward normal expansion, rather
it varies both with the x and s coordinates. As a result, the circumferential curvature varies with

both x and s in the midspan region, but goes to zero at the boundary. This behavior at the bound-

ary is caused by the boundary conditions which force w° to be independent of s there. The axial
curvature is zero in the midspan region, but varies in the boundary region. Focusing on the behav-
jor at the boundary, recall the normal displacement at the boundary is forced to zero for an ellipti-
cal cylinder, while away from the boundary, as shown in f';g. 1-1, the normal displacement is

outward at the crown and keel and inward at the sides. This situation creates axial curvature which
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is positive on the sides and negative on the crown and keel. The twist curvature is due to a varia-

tion in w° with both the x and s coordinates. At the boundary the twist curvature, like the circum-
ferential curvature, is zero. However, beyond the boundary, the twist curvature varies with both x

and s.
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Figure 2-4. Influence of ellipticity on the curvatures of a quasi-isotropic cylinder.
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2.4 Force and Moment Resultants

The circumferential, axial, and inplane shear force resultants, N, N,, and N, respectively,

seen in Figure 2-5a-f, are normalized by the midspan hoop force resultant for a circular cylinder,
namely,

PR (2.4)
The force resultants are based upon a combination of the strains seen in Figure 2-3a-f, each multi-
plied by a constant, 4, as given in eq. 1.9a-c. Since 4 ;5 and A 54 are zero due to a balanced lami-
nate scheme, the circumferential and axial force resultants are a combination of only the reference
surface circumferential and axial strains, and the shear force resultant is proportional only to the
reference surface shear strain.

Because of the normalization given in eq. 2.4, the normalized circumferential force result-
ant for a circular cylinder is unity at the midspan, but deviates from unity at the boundary due to
end effects there. The circumferential force resultant for the elliptical case varies with the x and s
coordinates, but, for a given s, behaves similarly to the circular cylinder case in the x direction. Of
note is that at the midspan the average of the circumferential force resultant for the elliptical cyl-
inder case is approximately equal to the circumferential force resultant for the circular cylinder
case, namely unity.

Again because of the normalization given in eq. 2.4, for the circular cylinder case the nor-
malized axial force resultant is 1/2 and is spatially uniform. In contrast, the axial force resultant
for the elliptical cylinder case varies with the x and s coordinate. Concentrating on the midspan of
the elliptical cylinder, it is seen that the sides of the cylinder are in axial compression and the
crown and keel are in tension. Concentrating on the boundary, it is seen that the sides of the cylin-

der are in tension and the crown and keel are in compression, just the opposite of the midspan. As

Effect of Elliptical Geometry on Cylinder Response 23



with the axial displacement for an elliptical cylinder, the axial force resultant changes signs with
spatial location, causing some locations to be zero. This is not a situation that appears in the circu-
lar case.

The inplane shear force resultant for the circular case is zero due to the shear strain being
zero. For the elliptical case, the shear force resultant is nonzero varies considerably with both x
and s, and the magnitude is comparable to that of the circumferential and axial force resultants.

o
Though it cannot be seen in the figure, N, is not zero at x/L=0.5. Since gv_ is nonzero there, N,
x

is nonzero there.
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Figure 2-S. Influence of ellipticity on the force resultants of a quasi-isotropic cylinder.
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The circumferential, axial, and twist moment resultants, M,, M,, and M, respectively, are

normalized by the factor H/2 times the midspan hoop force resultant in a circular cylinder,

namely,

p,R%I : @.5)
The moment resultants are based upon a combination of the curvatures seen in fig. 2-4a-f, each
multiplied by a bending stiffness, D;;, as given in eq. 1.9d-f. Recall from fig. 2-4 that the axial cur-
vature is an order of magnitude greater than the circumferential or twist curvatures. However, the
bending stiffnesses, Dy, control the degree to which the curvature influences the moment result-
ants. For the quasi-isotropic layup used, D4 and D are an order of magnitude smaller than D,

Dy5, D3,, and Dgg. As a result, the circumferential and axial moment resultants are dominated by
%°,, as can be seen by examining the character of x°, vs. x and s and M, and M, vs. x and s, partic-
ularly near the ends. On the other hand, for the twist moment M., Dgg &% is similar in magni-
tude to D ;5 X%, both of which are larger than D¢ x°;. Therefore, M, is controlled by both ™

and x°,. Note that M, is the smallest of the three moment resultants.

Continuing with the discussion of the moment resultants: the most significant portion of
circumferential, axial, and twist moment resultants is at the boundary. There the moment result-
ants are simply a response to the clamped boundary condition from eq. 1.3. The circular cylinder
response to internal pressure is a uniform outward normal expansion which is restricted to be zero
at the boundary, independent of s. The moment resultants at the boundary of fig. 2-6a,c,e show a
response not dependent on the s coordinate. However, because the elliptical cylinder response to
internal pressure is inward normal displacement on the sides and outward normal displacement on

the crown and keel, the moment resultants on the boundary are dependent on s. This is reflected in
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fig. 2-6b,d,f with a sign reversal in the moment resultants at the boundary between s/C=0 and

s/C=0.25.
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Figure 2-6. Influence of ellipticity on the moment resultants of a quasi-isotropic cylinder.

28 Effect of Elliptical Geometry on Cylinder Response



The transverse shear stresses T, and ty- are not directly included in the energy expression
of eq. 1.5. Therefore, there are no transverse shear force resultants associated with these stresses
in the theory presented. However, Newtonian equilibrium approaches indicate that transverse
shear force resultants are necessary for enforcing equilibrium. Moment equilibrium of a differen-
tial element of the cylinder wall dictates the following relation between transverse shear force

resultants, O, and Q,, and moment resultants:

0. = i{l *+ iaf{ xs
*  Ox Os
(2.6)
o - Mo M,
x s
In terms of transverse shear stresses
Qx = I-g txcdc
; @n
=
0, = [ Tacdl
2

Since the present theory involves the moment resultants that appear on the right side of the equa-
tions in eq. 2.6 as explicit functions of x and s, O, and O, can be computed from eq. 2.6.

The circumferential and axial transverse shear force resultants, 0, and Q,, respectively,
are illustrated in fig. 2-7a-d, and they are normalized by the same factor used for the force result-
ants, namely eq. 2.4. Similar to the moment responses, the significant transverse shear force
resultants are restricted to the boundary. It is essentially these force resultants that enforce the
w°=0 condition at the boundary. The uniformity of the circular case in the s direction resultsin a
reaction at the boundary that is independent of s. However, with the elliptical cylinder, the values

of 0, and 0, change sign at the boundary. This is reflected in fig. 2-6b,d with a sign reversal at the
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boundary between s/C=0 and s/C=0.25. Note that the magnitudes of the transverse shear force

resultants are much less than the magnitudes of the inplane force resultants.

Elliptical

Figure 2-7. Influence of ellipticity on the transverse shear force resultants
of a quasi-isotropic cylinder.

2.5 Summary of the Effects of Ellipticity

The effects of ellipticity seen in this chapter included several key issues. For instance,
responses for the elliptical case varied with both the x and s coordinate. This variation was seen in
every elliptical response, either over the entire domain, or at the boundary. Also, axial responses

for the elliptical case were compressive for axial displacement, axial strain, and axial force result-
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ant. For the elliptical cylinder, the circumferential displacement and shear force resultant were not
zero, whereas, both of these responses were zero for the circular cylinder. Finally, an ellipticity of
0.7 caused a change in sign of the response at the boundary for axial curvature, all moment result-
ants, and the shear force resultants as s varies from &/C=0 to s/C=0.25. It is felt less severe
ellipses, e.g., e=0.90, may not experience these sign reversals. To this point the effects of elliptic-
ity have been evaluated using a geometrically linear analysis for both circular and elliptical cylin-
ders constructed with a quasi-isotropic laminate. In the next chapter the focus will be shifted from
comparing the response of elliptical cylinders with circular cylinders to comparing the responses
of elliptical cylinders as predicted by the geometrically nonlinear theory with the responses as

predicted by the linear theory.
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Chapter 3 Effect of Geometric Nonlinearities on Cylinder Response

The differences between linear and nonlinear analyses are strictly due to the nonlinear
terms in the strain-displacement equations, as given by the underlined terms in eq. 1.7a-c. This
chapter examines the differences between linear and nonlinear analyses created by these nonlinear
terms. For this comparison a quasi-isotropic laminate is again chosen, and responses are evaluated
using both geometrically linear and geometrically nonlinear analyses, but for just an elliptical cyl-
inder. The effects of geometric nonlinearities are shown using three different types of figures. The
first type is a three-dimensional format illustrating the response of one-eighth of the cylinder, as
in the previous chapter. The coordinate locations range from 0 <x/Z <0.5and 0 <s/C <0.25. The
remaining types are two-dimensional in format, with the desired response plotted as a function of
/L or s/C. These two-dimensional format graphs show a comparison of linear and nonlinear anal-
yses along a line at a particular s/C or x/L location for the purpose of a closer examination of an
issue that may be difficult to discern from a three-dimensional format. A comparison of linear and
nonlinear analyses are shown only for responses that display significant differences, not all

responses.

3.1 Displacements

Recall from the boundary conditions of eq. 1.3 that the axial displacement is zero at x/L =
-0.5, and at x/L = 0.5 the axial displacement is determined by eq. 1.4. Recall also that for the linear

analysis, and as was discussed earlier in connection with fig. 2-2b, the axial displacement at x/Z=0
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is practically independent of s and it is one-half the value of the axial displacement at x’Z=0.5.
This factor of two also exists for the nonlinear case. However, the magnitude of the axial displace-
ment response differs for the two analyses. As seen in fig. 3-1 and fig. 3-2, the nonlinear analysis
requires a slightly smaller axial end displacement, or 4, to satisfy the axial equilibrium given in
eq. 1.4. Figure 3-1 is a three-dimensional format figure and fig. 3-2 is a two-dimensional format
figure with the axial displacement given as a function of x/L at two different s/C locations, s/C =
0.0 and 0.25. Though the overall characters of the axial displacement responses are the same for
linear and nonlinear analyses, the displacement difference at /L = 0.5 is evident. The existence of

negative axial displacements is also clearly seen in this figure.

Nonlinear

ol LN
oS,

Figure 3-1. Effect of geometric nonlinearities on the axial displacement.
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Figure 3-2. Effect of geometric nonlinearities on the axial displacement:
linear vs. nonlinear at x/L. = 0.

Comparing linear and nonlinear analyses, the circumferential displacements appear almost
identical as shown in fig. 3-3. However, when circumferential displacements are plotted as a func-
tion of &/C along x/ = 0 (midspan), as in fig. 3-4, a difference in the displacement magnitudes is
detected. For the linear analysis, the extreme value of v*/H is -0.4918 and it is located at s/C =
0.1458. For the nonlinear analysis, the extreme value of v*/H is -0.4633 and it is located at s/C =
0.1563. In short, the extreme circumferential displacement in the nonlinear analysis is smaller in
magnitude by approximately 5.8%, and is also shifted approximately 6.7% towards the side of the

cylinder.
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Figure 3-3. Effect of geometric nonlinearities on the circumferential displacement.
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Figure 3-4. Effect of geometric nonlinearities on the circumferential displacement:
linear vs. nonlinear at x/L = 0.

The normal displacement, shown in fig. 3-5 and fig. 3-6, tends to ‘flatten’ relative to the
linear analysis when evaluated using a nonlinear analysis. The normal displacement, as seen in
fig. 3-6, evaluated using a nonlinear analysis moves outward less in the crown region, represented

by 0 < s/C <0.10, than does the normal displacement evaluated using a linear analysis. This is due

to the effect of N, coupling with w through geometrically nonlinear effects.

35 Effect of Geometric Nonlinearities on Cylinder Response



Nonlinear

= r

s0|[

3 = :

w° - 9

H 7 [
0 .

R

'2 T L i T
0.2% 0.20 0.18 0.10 0.08 0.00
oC

Figure 3-6. Effect of geometric nonlinearities on the normal displacement:
linear vs. nonlinear at x/L = 0.

All strain, curvature, and force and moment resultant responses can be expressed in terms
of the displacements, and as just shown in fig. 3-1 through fig. 3-6, each of the displacements pre-
dicted using a nonlinear analysis varies from the displacements predicted using a linear analysis.

Therefore, each of these displacement-dependent responses can be expected to also vary using a
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nonlinear analyses. However, some responses show little difference between linear and nonlinear

analyses. To follow is a discussion of the responses that do show differences.

3.2 Strains and Curvatures

The circumferential strain for the nonlinear analysis follows the same trend as the circum-
ferential strain for the linear analysis, as seen in fig. 3-7 and fig. 3-8. However, the circumferential
strain at the crown of the cylinder using the nonlinear analysis does not reach the same magnitude

as the circumferential strain at the crown of the cylinder using the linear analysis. The nonlinear
circumferential strain from eq. 1.7a depends on the variation of V* with s, w°, the inverse radius of
curvature, and an additional nonlinear term which is the square of the variation of w? with 5. As
seen earlier, the normal displacement, w°, experiences a ‘flattening’ effect, which causes w’ and
the variation of w° with s to be smaller in magnitude at the crown of the cylinder. Also, v° shows a
reduction in magnitude, which lessens the magnitude of the variation of v* with s. All of these
reactions to a nonlinear analysis combine to result in a lower magnitude for &,. The differences

between linear and nonlinear analyses for the axial strain and shear strains, from eq. 1.7a and c,

appear to be negligible as compared with the difference in the circumferential strains.
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Figure 3-8. Effect of geometric nonlinearities on the circumferential strain:
linear vs. nonlinear at x/L = 0.

The differences between linear and nonlinear analyses for circumferential curvature are
easily visible in fig. 3-9 and fig. 3-10. In the midspan region for the nonlinear analysis case, there

is a significant ‘flattening’ along the crown of the cylinder. The definition for circumferential cur-

vature, given in eq. 1.7¢ as the second derivative of w® with respect to the s coordinate, is the

same for both the linear and nonlinear analyses. As the normal displacement experiences a ‘flat-
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tening’ effect at the crown, the circumferential curvature also tends to ‘flatten’ at the crown of the

cylinder.

Figure 3-9. Effect of geometric nonlinearities on the circumferential curvature.
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Figure 3-10. Effect of geometric nonlinearities on the circumferential curvature:
linear vs. nonlinear at x/L = 0.

The differences between linear and nonlinear analyses for axial curvature, as seen in fig.
3-11 and fig. 3-12, are slight in comparison to differences in the circumferential curvature. In the

midspan region there is virtually no difference, both analyses predicting zero axial curvature. The
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differences between linear and nonlinear analyses for axial curvature exists almost solely in the
boundary region, where the axial curvature experiences a change in sign. For the nonlinear case,
at the boundary, fig. 3-12, the magnitude of the positive and negative axial curvatures changes
slightly, such that the sides have more curvature and the crown and keel have less, and thus the
point where axial curvature changes sign moves circumferentially. The influence of the nonlinear-

ities on the axial curvature is explained as follows: The definition for axial curvature, given in eq.

1.7d as the second derivative of w® with respect to the x coordinate, is the same for linear and non-
Wo
linear analysis. The boundary conditions given in eq. 1.3 require that w? and 3 be zero at the

end. Since by fig. 3-6 the magnitude of w° at the crown is less for the nonlinear case, the axial cur-

vature has less to overcome in order to enforce these boundary conditions at the crown of the cyl-

inder. On the other hand, again referring to fig. 3-6, the magnitude of w? at the sides of the
cylinder is slightly greater for the nonlinear analysis as compared to the linear analysis. Therefore,
the axial curvature for the sides is slightly greater for nonlinear case.

The differences between linear and nonlinear analyses for twist curvature is not significant

compared to the circumferential and axial curvatures.
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Figure 3-12. Effect of geometric nonlinearities on the axial curvature:
linear vs. nonlinear at x/L = 0.5.

3.3 Force and Moment Resultants
The nonlinear circumferential force resultant follows the same trend as the linear circum-
ferential force resultant, as seen in fig. 3-13 and fig. 3-14. However, the circumferential force

resultant at the crown of the cylinder using nonlinear analysis does not reach the same magnitude

as the circumferential force resultant at the crown of the cylinder using linear analysis. This is the
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same behavior as seen for circumferential strain, fig. 3-8, which, as seen in eq. 1.9b, is a part of
the circumferential force resultant. The axial force resultant shows this same reduction at the
crown of the cylinder, although the reduction is less significant, and it is also due to the differ-
ences between linear and nonlinear analyses for the circumferential strain. The differences
between linear and nonlinear analyses for the shear force resultant are not significant compared to

the differences for the circumferential and axial force resultants.

Nonlinear

Figure 3-13. Effect of geometric nonlinearities on the circumferential force resultant.
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Figure 3-14. Effect of geometric nonlinearities on the circumferential force resultant:
linear vs. nonlinear at x/L = 0.

The differences between linear and nonlinear analyses for circumferential moment result-
ant, as seen in fig. 3-15 and fig. 3-16, are found in both the midspan and boundary regions. In the
midspan region for the nonlinear case, there is a reduction in the crown region of the cylinder, and
an increase in the side region, as was seen with the circumferential curvature of fig. 3-10. Also,
there is a change in the response at the ends due to nonlinear analysis, as was seen with axial cur-
vature. However, the difference in response between linear and nonlinear analyses in the bound-

ary region is significantly less than the difference in response in the midspan region. The

definition for circumferential moment resultant, given in eq. 1.9¢ as a linear combination of K,

%_ and *°,,, is the same for linear and nonlinear analysis. Since x°, and x°, are both a part of the

circumferential moment resultant, the differences between linear and nonlinear analyses from
each of these curvatures are reflected in the difference for the circumferential moment resultant.
Although not shown here since they are small, the same reasoning applies to differences there are

in the axial and twist moment resultants.
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Nonlinear

Figure 3-15. Effect of geometric nonlinearities on the circumferential moment resuitant.
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Figure 3-16. Effect of geometric nonlinearities on the circumferential moment resultant:
linear vs. nonlinear at x/L = 0 and 0.5.

The transverse shear force resultants, 0, and 0,, seen in figs. 3-17 and 3-18, and figs. 3-19
and 3-20, are defined in eq. 2.6 and depend on the moment resultants. As seen with the moment
resultants, the difference between linear and nonlinear analyses occurs mostly in the boundary
region. The magnitude of the peaks of the transverse shear force resultants at or near the sides are

higher for the nonlinear case, while near the crown they are lower. Most noteworthy for Q, is the
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change in sign at the boundary, and the point at which the sign changes. The circumferential trans-
verse shear force resultant changes sign at s/C = 0.1250 for the linear analysis and at s/C=0.1458
for the nonlinear analysis. However, for 0,, the change in sign is at approximately the same s/C

location for both analyses.

Nonlinear

Figure 3-17. Effect of geometric nonlinearities on the circumferential transverse
shear force resultant.

Figure 3-18. Effect of geometric nonlinearities on the circumferential transverse
shear force resultant: linear vs. nonlinear at x/L = 0.5.
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Nonlinear

Figure 3-19. Effect of geometric nonlinearities on the axial transverse shear force resultant.
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Figure 3-20. Effect of geometric nonlinearities on the axial transverse shear force resultant:
linear vs. nonlinear at x/L = 0.5,

While O, and O, represent the transverse shear force resultant for the linear analysis, there
are other transverse force resultants defined for the nonlinear analysis. The O, and O, just shown

in fig. 3-17 through fig. 3-20 for the nonlinear case have the same definitions as the linear case

and they are given in eq. 2.6. These definitions for 0, and O, for the nonlinear case still represent
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transverse shear force resultants. However, they do not act strictly in the outward or inward nor-
mal direction, but are rotated away from the normal direction. The transverse force resultants
(note the absence of the word ‘shear’) in the normal direction for the nonlinear case are denoted

here as ¥, and V,, and are given by,

aMx ast awo a“’o
= _ %4 __ o
Ve ox Os N‘ax N"as a1
aM ow’ ow’
= ___ X3 . 3 ow
Vs Ox * s * N‘"ax N‘as

These definitions of the transverse force resultants are the consequence of enforcing moment

equilibrium for a deformed element of cylinder wall. For the nonlinear analysis ¥, and V, are

what is needed to enforce w°=0 at the boundary. As the definition of ¥, and V include inplane
force resultants N, N,, and N,,, and hence g,, 0,, and 7, V; and V, are not, strictly speaking,
shear force resultants in the spirit of eq. 2.7. They are thus referred to as transverse force resuit-

ants.

The normalized nonlinear circumferential and axial transverse force resultants, 7, and 7,

respectively, as illustrated in fig. 3-21 and fig. 3-22, are normalized by the same factor used for

the force resultants in eq. 2.4. As seen in fig. 3-21, the differences between O, and V, are signifi-
cant in all regions. On the other hand, 0, and 7,, as in fig. 3-22, have similar behaviors in the
midspan and boundary regions. However, the surface of ¥, near the boundary appears smoother

than the surface of O,.
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Figure 3-22. Axial transverse force resultants.

3.4 Summary of the Effects of Nonlinearity

The effects of geometric nonlinearities seen in this chapter included several key issues.
Between linear and nonlinear analyses, the axial displacement displayed an overall difference in
magnitude, the circumferential displacement had a shift in the local minimum, and the normal dis-
placement flattened at the crown of the cylinder. Aside from the displacements, differences

between linear and nonlinear analyses, if any exist, seemed to split into two categories, those due
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to flattening of the crown of the cylinder, and those involving a change in magnitude of the behav-
ior at the boundary. Flattening of the crown of the cylinder was seen in the circumferential strain,
circumferential curvature, and circumferential force resultant. The change of the behavior at the
boundary was seen in axial curvature, and axial and circumferential transverse shear force result-
ants, 0, and Qx- The moment resultants showed both behaviors, a flattening in the crown and a
change of magnitude at the boundary. Also, two definitions of the transverse force resultants were
introduced. There were significant differences between the circumferential transverse shear force
resultant, J,, and the circumferential transverse force resultant, V.

The next chapter addresses the consequences of varying the orthotropy of the cylinder.
Cylinder responses are compared for axially-stiff, quasi-isotropic, and circumferentially-stiff lam-

inates.
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Chapter 4 Effect of Material Orthotropy on Cylinder Response

Thus far, the influences of elliptical geometry have been studied using a linear analysis
and a quasi-isotropic cylinder, and the influences of geometric nonlinearities have been studied
using a quasi-isotropic cylinder. In this chapter the focus is shifted from the influence of elliptical
geometry and geometric nonlinearities to the influence of material othotropy. The quasi-isotropic
laminate considered in the previous chapter will be compared with axially-stiff and circumferen-
tially-stiff laminates using a geometrically nonlinear analysis for an elliptical cylinder. Each
laminate has a different response to internal pressure due to the percentages of fibers running in
the axial and circumferential directions. The axially-stiff laminate has almost 50% of the fibers
aligned with the axial direction, the circumferentially-stiff laminate has almost 50% of the fibers
aligned with the circumferential direction, and the quasi-isotropic has an equal number of fibers
aligned with the axial, circumferential, and +45° direction. For this study of the influence of
orthotropy, a three-dimensional format figure for each of the three laminates will again be shown,
along with two-dimensional format figures along a line at a particular s/C or x/L location for the
purpose of a closer examination of an issue that may be difficult to discern from the three-dimen-
sional format figures. Only those responses which show any significant differences due to orthot-

ropy are discussed.
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4.1 Displacements

Recall from the boundary conditions of eq. 1.3 that the axial displacement is zero at x/Z =
-0.5, and at x/L = 0.5 the axial displacement is determined by eq. 1.4. It appears that for all the
laminates the axial displacement at x/L = 0.5 is approximately twice the value at x/Z = 0. How-
ever, the magnitude of the axial displacement response differs for the three laminates. As seen in
fig. 4-1, the circumferentially-stiff laminate requires a higher axial end displacement, or 4, to sat-
isfy the axial equilibrium given in eq. 1.4 than either the quasi-isotropic or axially-stiff laminates.
In fact, the axially-stiff elliptical cylinder under internal pressure evaluated using nonlinear analy-
sis requires a negative axial displacement to satisfy the axial equilibrium equation. Though the
overall characters of the axial displacement responses are the same, the displacement difference at

x/L = 0.5 is evident.
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Figure 4-1. Influence of orthotropy on the axial displacement.

The circumferential displacements for the various laminates, as seen in fig. 4-2, have a
similar overall behavior. The circumferential displacement is zero at x/Z=0.5 due to the boundary
conditions given in eq. 1.3, and increases in magnitude to a local extreme at s/C = 0.1563 at the
midspan. However, the magnitude of this local extreme varies between the quasi-isotropic, axi-
ally-stiff, and circumferentially-stiff laminates. In fig. 4-2a, the three laminates are closely exam-
ined along the line at x/Z=0. The circumferential displacement for the axially-stiff laminate is the

smallest in magnitude, while it is largest in magnitude for the quasi-isotropic laminate.
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Figure 4-2. Influence of orthotropy on the circumferential displacement.

Although the overall behavior of the normal displacement is unaffected by orthotropy, as
seen in fig. 4-3, the magnitude of the normal displacement at the midspan is controlled by the
orthotropy. At the crown of the cylinder the normal displacement for the axially-stiff laminate is
greater than for the circumferentially-stiff laminate, but less than for the quasi-isotropic laminate.
However, at the side of the cylinder the situation is somewhat reversed and the magnitude of the
normal displacement for the circumferentially-stiff laminate is greater than for the axially-stiff

laminate, but again less than the magnitude of the normal displacement for the quasi-isotropic
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laminate. In general, the circumferentially-stiff laminate best controls expansion at the crown of

the cylinder and the axially-stiff laminate best controls contraction at the side of the cylinder.

Quasi-isotropic

Tl g

g,

%
g,

Figure 4-3. Influence of orthotropy on the normal displacement.
4.2 Strains and Curvatures

As seen in fig. 4-4, the degree to which the circumferential strain varies with the s coordi-
nate at the midspan is completely affected by the laminate considered. Recall from fig. 2-3a-b, the
circumferential strain for a circular cylinder has no variation with the s coordinate, while the cir-

cumferential strain for the elliptical cylinder varies considerably with the s coordinate. As seen in
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fig. 4-4, at midspan the circumferentially-stiff laminate mitigates, to a high degree, the effect of
ellipticity, as the strain does not vary much with s there. The circumferential strain for the axi-
ally-stiff and quasi-isotropic laminates varies more with the s coordinate at the midspan. There-
fore, it appears that the percentage of fibers in the circumferential direction controls the degree of

variation of the circumferential strain with the s coordinate at the midspan.
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Figure 4-4. Influence of orthotropy on the circumferential strain.

As seen in fig. 4-5, the degree to which the axial strain varies with spatial location is also

affected by the laminate considered. Comparatively, the axial strain for the axially-stiff laminate
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varies least with both the x and s coordinates and it varies the most for the circumferentially-stiff
laminate. Recall from fig. 2-3¢c-d, the axial strain for a circular cylinder has no variation with the s
coordinate, while for the elliptical cylinder it varies considerably with both the x and s coordinate.
Although the axially-stiff laminate doesn’t completely mitigate the effect of ellipticity on the axial
strain at midspan, the increased percentage of fibers in the axial direction controls the degree of

spatial variation for the axial strain there. To be noted, the degree of orthotropy has little if any

influence on the shear strain distribution with x and s.
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Figure 4-5. Influence of orthotropy on the axial strain.
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As seen in fig. 4-6, in the midspan region the axial curvature is similar for all orthotropies,
namely zero. In the boundary region, however, the variation with s of the axial curvature depends
on the orthotropy. Recall that the behavior of the axial curvature at the boundary is due to the
clamped boundary conditions imposed on the cylinder ends, and that the elliptical shape forces a
reversal in curvature at the boundary as s/C changes from O to 0.25. The orthotropy affects the
degree of the reversal in curvature at the boundary. Comparatively, at the boundary, the axial cur-
vature for the axially-stiff laminate varies least with the s coordinate, and it varies the most for the
circumferentially-stiff laminate. Therefore, the percentage of fibers in the axial direction controls
the degree of reversal of the curvature at the boundary. Interestingly, the axially-stiff elliptical cyl-
inder evaluated using a linear analysis instead of a nonlinear analysis does not show this reversal

of curvature.
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Figure 4-6. Influence of orthotropy on the axial curvature.

As seen in fig. 4-7, the overall behavior of the twist curvature is similar for all orthotro-
pies. However, the magnitude of the local extreme in the twist curvature, and its location with x
and s, changes with the degree of orthotropy. The twist curvature for the circumferentially-stiff
laminate has a minimum value of -0.3796 located at x/Z=0.4758 and s/C=0.1458, the twist curva-
ture for the quasi-isotropic laminate has a minimum value of -0.3920 located at x/Z=0.4678 and
§/C=0.1458, and the twist curvature for the axially-stiff laminate has a minimum value of -0.4285

located at x/Z=0.4678 and s/C=0.1563. Therefore, as the percentage of fibers in the axial direction
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increases, the magnitude of the local minimum value of the twist curvature increases and shifts

toward the side of the cylinder, and as the percentage of fibers in the circumferential direction

increases, the magnitude of the local minimum value of the twist curvature decreases and shifts

toward the clamped boundary. The circumferential curvature does not depend on the degree of

othotropy.
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Figure 4-7. Influence of orthotropy on the twist curvature.
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4.3 Force and Moment Resultants

As seen in fig. 4-8, the boundary region for the circumferential force resultant differs
among the circumferentially-stiff, axially-stiff, and quasi-isotropic laminates. At the clamped
boundary, the circumferential force resultant for the quasi-isotropic laminate varies more with the
s coordinate than for the axially-stiff laminate, but it varies less than the circumferential force
resultant for the circumferentially-stiff laminate. Therefore, as the percentage of fibers in the axial
direction increases, the variation with the s coordinate of the circumferential force resultant at the

boundary decreases.
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Figure 4-8. Influence of orthotropy on the circumferential force resultant.

The circumferential moment resultant, as seen in fig. 4-9, also differs among the circum-
ferentially-stiff, axially-stiff, and quasi-isotropic laminates. The variations with s along x/Z=0 and
0.5 are examined for a closer look at these differences. The circumferential moment resultant is
not large in magnitude at the midspan, but there are differences among the orthotropies. The cir-
cumferential moment resultant for the circumferentially-stiff laminate is significantly greater in
magnitude at the side of the cylinder, changes sharply between s/C=0.20 and 0.15, then flattens

out at the crown to a magnitude greater than those for the axially-stiff and quasi-isotropic lami-
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nates. Along the clamped boundary the circumferential moment resultant for the circumferen-
tially-stiff laminate is greater in magnitude at the side and the crown than for the other two
laminates. The axial and twist moment resultants have results similar to the circumferential
moment resultant in that the magnitude at the side and crown, and at the midspan and clamped

boundary depend to some degree on orthotropy.
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Figure 4-9. Influence of orthotropy on the circumferential moment resultant.
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As seen in fig. 4-10, in the midspan region the circumferential transverse shear force
resultant is similar for all three orthotropies, namely, almost zero. In the region of the clamped

boundary, however, the variation of the force resultant depends on the orthotropy. Recall that the

axial and circumferential transverse shear force resultants enforce the w=0 condition at the
boundary of the cylinder, and with the elliptical geometry they are forced to a change sign at the
boundary because the cylinder moves outward at the crown and keel, and inwards at the sides.
The orthotropy affects the degree of the sign reversal of the circumferential transverse shear force
resultant at the boundary. Comparatively, the force resultant for the axially-stiff laminate varies
least with the s coordinate at the boundary and that for the circumferentially-stiff varies most. In
general, the percentage of fibers in the axial direction controls the degree of the sign reversal of

the circumferential transverse shear force resultant at the boundary.
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Figure 4-10. Influence of orthotropy on the circumferential transverse shear
force resuitant, Q,.

As seen in fig. 4-11, in the midspan region the axial transverse shear force resultant is sim-
ilar for all orthotropies, being close to zero there in all cases, but in the clamped boundary region

the variation of the force resultant depends on the orthotropy. Again the boundary conditions on

w° combined with the elliptical geometry force a change of sign in the force resultant, the location
of this sign change depending on the orthotropy. Furthermore in the side region of the cylinder,

the force resultant for the circumferentially-stiff laminate is greatest in magnitude and that for the
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axially-stiff laminate is smallest in magnitude. In the crown region of the cylinder, this trend

reverses. The force resultant for the circumferentially-stiff laminate is smallest in magnitude and

that for the axially-stiff laminate is greatest.
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Figure 4-11. Influence of orthotropy on the axial transverse shear force resultant, Q;.
As seen in fig. 4-12, in the midspan region the circumferential transverse force resultant is
similar for all orthotropies, but in the boundary region of the cylinder it varies. The orthotropy
affects the location of the sign reversal and the peak-to-peak variations of the circumferential

transverse force resultant at the boundary. In general, as the percentage of fibers along the axial
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direction increases, the variation of the circumferential transverse force resultant with the s coor-

dinate decreases at the boundary.

Quasi-isotropic

0.03

0.02 4

0.01 4

Vs

0.00

<0.01

0.02 | —— quasiHsotropic @ XL = 0.8 -
—— wislyellf @ WL = 0.5
——— circumfsrentally-s#i @ XA = 0.5

0.0 Y

R T T
0.2% 0.20 0.18 0.10 0.08 0.00

Figure 4-12. Influence of orthotropy on the circumferential transverse force resultant, V,.

As seen in fig. 4-13, in the midspan region the axial transverse force resultant is similar for
all orthotropies, being very close to zero, but in the boundary region it varies, depending on the
orthotropy. Again, the boundary conditions on w° and the elliptical geometry force a change of

sign in the axial transverse force resultant at the boundary. The orthotropy affects the location of

the sign reversal and the peak-to-peak variation of the axial transverse force resultant at the
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boundary. In the side region of the cylinder, the force resultant for the circumferentially-stiff lam-
inate is greatest in magnitude, and for the axially-stiff laminate it is smallest in magnitude. In the
crown region of the cylinder, these characteristics reverse such that the force resultant for the cir-

cumferentially-stiff laminate is smallest in magnitude, and for the axially-stiff laminate it is great-

est in magnitude.
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Figure 4-13. Influence of orthotropy on the axial transverse force resultant, V.
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4.4 Summary of the Effects of Orthotropy

The effects of orthotropy seen in this section included several key issues. The axially-stiff,
circumferentially-stiff, and quasi-isotropic laminates resulted in an overall difference in magni-
tude for the axial, circumferential, and normal displacements. In fact, the axially-stiff elliptical
cylinder evaluated using nonlinear analysis contracts axially in response to internal pressure,
whereas, for the other two cases there is axial extension. For some responses, orthotropy mitigates
the effect of ellipticity. For example, the circumferential strain behaves like that of a circular cyl-
inder in the midspan region of the circumferentially-stiff laminate. For the axially-stiff laminate,
the axial strain displays less spatial variation with both x and 5 compared to the axial strains for
the circumferentially-stiff and quasi-isotropic laminates. The variation with s at the clamped
boundary of the axial curvature, the circumferential force and moment resultants, and the trans-
verse force resultants depends significantly on orthotropy. Compared to the circumferentially-stiff
and quasi-isotropic laminates, for these responses the axially-stiff laminate does not generally
exhibit as much variation with s.

This chapter has presented a through discussion of the character of the response to internal
pressure of elliptical cylinders with three different levels of orthotropy. A complete catalogue of
all the geometrically nonlinear responses of the three cylinders is presented in Appendix A, along
with a comparison of the responses as predicted by the finite element code STAGS [6]. The latter
comparison is for the purpose of verifying the present analysis. As noted in Appendix A, by the
nature of finite element analysis, many of the important responses are not computed exactly at the
ends of the cylinder, the location where many responses assume a maximum or minimum value.
For this reason there appears to be a lack 6f agreement between STAGS predictions and the pre-

dictions of the present analysis near the ends of the cylinder. This issue becomes important when
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failure is studied, as it is in the next chapter. Whereas the present analysis may predict failure to
occur at the exact ends of the cylinder due to a certain pressure level, STAGS would predict fail-
ure to occur slightly inwards of the ends at a different pressure level. However, STAGS is not used
here to study failure so the issue never arises.

Also by way of a catalogue, Appendix B provides a listing of the axial displacement 4 for

each of the cases discussed here. Recall, 4 is determined by eq. 1.4.
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Chapter 5 Failure Analysis

In the past several chapters the influences of geometry and orthotropy on the responses of
elliptical and circular cylinders constructed with quasi-isotropic, axially-stiff, and circumferen-
tially-stiff laminates have been evaluated. Both geometrically linear and nonlinear analyses have
been used. In this chapter, an evaluation of failure using the maximum stress and Hashin [7] fail-
ure criteria is presented for elliptical cylinders by considering geometrically linear and nonlinear
analyses and quasi-isotropic, axially-stiff, and circumferentially-stiff laminates. The failure crite-
ria are used to assess the mode of failure (e.g., tensile or compressive fiber or matrix modes), the

location of failure, and the pressure at failure.

5.1 Failure Criteria

The maximum stress and Hashin failure criteria are three-dimensional theories that are
based on one-dimensional uniaxial and shear failure stresses. The one-dimensional failure stresses
are denoted as follows:

a; = tensile failure stress in the fiber direction

o, =compressive failure stress in the fiber direction (absolute value)

o7 = tensile failure stress transverse to the fiber direction

oy = compressive failure stress transverse to the fiber direction (absolute value)
7r = transverse failure shear stress

7, = axial failure shear stress

For graphite-epoxy typical values of the failure stresses are [2]:
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a; = 200, 000 psi
o, = 180,000 psi
a; = 7250 psi 6.1
or = 29,000 psi

t, = 14,500 psi

rr = 14, 500 psi

The maximum stress and Hashin failure criteria are linear and quadratic in the stresses,
respectively. For the maximum stress criterion, failure is assumed to occur when any one of the
stresses in the principal material coordinate system equals the respective failure stress level. For
the Hashin criterion, the stresses in the principal material coordinate system and the failure
stresses are combined quadratically to form a number of expressions and the material is assumed
to fail when any one of the expressions terms reaches unity. Alternatively, the maximum stress
criterion can be formatted so that failure is assumed to occur when the ratio of any one of the
stresses in the principal material system divided by the respective failure stress level reaches

unity. Therefore, these two criteria can be put on a somewhat similar basis.

5.1.1 Maximum Stress Theory

For the maximum stress criterion, there are three modes of failure: tensile, compressive,
and shear. There is assumed to be no interaction between modes of failure or between the stresses
in principal material coordinate system. For example, tensile failure occurs when either o, or g3
reaches the respective failure value, but g, doesn’t interact with g;; to cause tensile failure, say,
when both are 90% of their failure value. The shear failure mode is independent of sign, such that
a negative or a positive shear stress is equally capable of causing shear failure. The failure modes

of the maximum stress theory are denoted as follows:
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Tensile Modes (o;;, g2, > 0):

+ +
01 <0y 053 < Op (52

Compressive Modes (a;;, 2, < 0):

-0, <0y ~0y, < O (53)
Shear Modes:
‘023l <7r |UI3|<TA |012I <%y 64
For the purpose of computation, the following is a more convenient form for the maximum stress
criterion:

Tensile Modes (o), 022 > 0):

o o.
he 29| 2.1 (5.5
+ +
4 o1
Compressive Modes (o}, 022 <0):
o -0:
—<1 —Z <1 (5.6)
Oy o1

Shear Modes:

ol ., le oy, o 67

T T4 T4

With this form of the failure criterion, the cylinder is assumed to be safe from failure if all seven
of the left hand sides of egs. 5.5-5.7 are less than unity, and failure is assumed to occur when any

one of the seven left hand sides equals unity.

5.1.2 Hashin Theory
For the Hashin criterion, there are four modes of failure: tensile fiber, compressive fiber,

tensile matrix, and compressive matrix. The Hashin theory is written in terms of quadratic stress
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polynomials such that the interaction between the stresses represents an average stress state. The
four modes of the Hashin criterion are denoted as follows:
Tensile Fiber Mode: o;;>0

971 2 1,2 2

Oy T4

Compressive Fiber Mode: o;; <0

-0y

— <1 ¢B))]
Oy
Tensile Matrix Mode: (o3, + 033) >0
1 2, 1,2 1,2 2
" 2(022 + o) + -—2(0'23 — 0py033) + —5(012 +o3) <1 (5.10)
(o1 T T4

Compressive Matrix Mode: (03, + 033) <0

-\2
i 1 2 2 2 2
-L[(—L) - 1}(0’22 + o)t ;—2(022 + o)+ '%(023 - 0n03)t '15(0'12 + o) <1 61D

-\27
o1 T 77 7T L7

However, since g3 is assumed to be negligible for the present analysis of the elliptical cylinders,
the Hashin failure criterion simplifies as follows:

Tensile Fiber Mode: o;;>0

2
d 1,2 2
(—If) +=(0); + o) <1 (5.12)
Gy T4
Compressive Fiber Mode: oj; <0
-
A (5.13)
oy

Tensile Matrix Mode: 0;,>0
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2 2
o- -
(_n_) + .3.3) + (ol + o) <1 (5.14)

+
O 1 74

Compressive Matrix Mode: 0, <0
O 2 2 2
o Lo o
._22[(_11) - 1J + (_2;) + (_23) + .13(032 +arp)<l (5.15)
o7 27 27 Tr 7
Hence, the cylinder is assumed to be safe from failure when all four left hand sides of eqs.
5 12-5.15 are less than unity, and failure is assumed to have occurred when any one of the four left

hand sides equals unity.

5.2 Determination of Stresses

In order to make use of either failure criterion, computation of the inplane and interlami-
nar shear stresses in the principal material coordinate system, which is shown in fig. 5-1, are nec-
essary. Note the coordinate &3 coincides with the through-thickness coordinate §, where ¢ varies
from -H/2 < ¢ <H/2 and is zero at the wall midsurface, or reference surface. The normal and shear

stresses in the (£,&,) plane (o, 02, 0}2) are termed inplane stresses. The shear stresses trans-
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verse, or perpendicular, to the (£),£;) plane (o3, 0;3) are called interlaminar stresses. (Actually

due to the complementary nature of shear stresses, 0,3 and o33 also act parallel to the 1-2 plane)

Iy 53 (=C)

[} >

13/1 Oy
|
| On

% o —- =+
On §2

0-12 012

1

&1
»

Figure 5-1. Inplane and interlaminar stresses in principal material direction.

5.2.1 Inplane Stresses

The inplane stresses can be written in terms of reference surface strains and curvatures,

which are, as seen in previous chapters, a direct result of the semi-analytical solution. These

stresses vary through the thickness of the cylinder wall and the inplane stresses in the ¥ layer are

given by

I

9

TXS

k _ . — Ok k =k
Q11 Q12 Qusl | & 011 Q12 Qs
= 012 022 026l | &| ~ 012 022 036
Q16 026 Oss| Y 016 026 Oss

£+ 6K

&t 6K

R (5.16)

Yo + 05y

where [Q,-j]" is the transformed reduced stiffness matrix of the ¥ layer, and eq. 1.6 has been

employed to compute the strains in the K layer. The stresses in principal material coordinate sys-

tem can be obtained by transformation, namely

76

Failure Analysis



k 2 . 2 . k
o, cos 6, sin” 6, 2cosGsin; || o,
= .2 2 .
02 sin” 6, cos“6, -2cos6sin6 || 9| > G.17)
o . . 2 .2 T,
12 |—c0s G sin ), cosG;sin 6 (cos™ G, — sin"G,)| L

where 6, is the fiber angle of the K 1ayer with respect to the axial direction of the cylinder.

5.2.2 Interlaminar Stresses

For the geometrically linear case, the interlaminar stresses in the layers, 7, and 7, can be

evaluated by using the equilibrium equations of linear elasticity written in a cylinder coordinate

system, namely,

6_0'r+2f"+£3_‘r,x+0',—a_, =0

or Os ox r

oo, Ot,, Ot, 2
“Us T  Tlxs 4 =0 (5.18)
os " or oOx 7 s

?_o_.x_'__a_frx_*_?ixs_‘_lr = 0,
ox or os r’™

where the r, x, and s coordinates are shown in detail in fig. 5-2. In fig. 5-2 both r-s and r-x cylinder
wall cross sections are shown. The radius of curvature of an arbitrary point within the wall is »
and, recall, the radius of curvature of the wall midsurface is R(s). (The equilibrium equations of
linear elasticity are used because, as will be shown, the contributions of the interlaminar stresses
to either failure criteria considered are quite small. It therefore was concluded that the interlami-

nar stresses were not causing failure. The nonlinear equations of equilibrium are very complex
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and could not be treated in the manner of the section to follow to compute 7, and r,, as a function

ofr)

Figure 5-2. Geometry of a section of the cylinder wall.

In order to determine 7, €q. 5.18¢ is rewritten as follows:

atrx 1 - 1 a — (gal atxs
3 +;"rx ;E;'(rt") 3 +?‘j—.§ ) ; (5.19)
Defining
r=R(s)+¢. (5.20)
it follows that
o _ 0
p -32' 5.21)
so eq. 5.19 becomes
d _ (0o, 07y
2RO+ 95 = {F+ FIRO+O. 652

Before _aa_g[(R(s) + ¢)7,,] can be integrated with respect to ¢ to obtain 7, 0, and 7, need to be

written explicitly in terms of ¢, namely, from eq. 5.16, as

o, = On(e+ Cx0)+ 0ra(ef + CK) + 016(Yay * C'f:.) = o, + (0,

7, = Q16(€5 +Gx) + O26(0 + Cx2) + Oos(tos + CK5) = T+ G,

(5.23)
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where,

"N

= Q0+ 0ne + 016z
of = 0yixl+ 012K% + Q16K
&, = 0166 + 02680 + Do6¥zs
= 0161+ 0265% + Q6Kzs

Within a layer these quantities do not vary with the thickness coordinate, {. Equation 5.22 can

(5.24)

now be written as,
) _ oo, 60': 6ri, a7,
5ARE) + O] (—a; O+ G RO )

(5.25)

«[@: + 2}k o[ T merc &)

Equation 5.25 can be integrated with respect to ¢ to obtain

(R(s) + §)7yx = hal, $) {(80’ o )(R(SM +£) (Zx”— ) R(s )9f ﬁ)} (5.26)

where ;n,(x, 5) is an unknown but to-be-determined function of integration. Dividing eq. 5.26 by

(R(s) + ¢) yields

5.27)

e (0,25 (re+ 5)¢ (228 (re2+29%

T Ry & B | @O0 | & 5 ) RGO

The terms in square brackets in eq. 5.27 can be simplified. In general, for thin-walled cyl-

inders ¢ is small when compared to R(5). This can be shown as follows:

G« Smax _ | ( (O 0495) = 0.0101 « 1 (5.28)
R(s) Run \a 2(0 7)*

where the numbers for a nine-layer elliptical cylinder have been used. Therefore,
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E(sg_)«l'

Thus, for example, the denominator of the terms in eq. 5.27 are

(R(s)+ O = R(s)(z + E(i_)) ~R(5).

Using similar arguments on other terms in eq. 5.27, it is concluded that

(res)+5) (rs)+29)

~1

—_— —_— ],
R()+9) (R(s) + )
Therefore, eq. 5.27 can be reduced to

2 € [ X X
(A ha(,5) _ 9% 4 gf"-' ¢+ 6_0', + s ﬁ
rx R(s) ox Os ox Os )2

= h(x,s)- {j;(x, )+ g (x, 3)523},

(5.29)

(5.30)

530

(5.32)

where f,{x,s) and g,(x,s) are known for each layer at a given value of x and s. The unknown func-

tion of integration term has been redefined to be h.(x,s). The function hx(")(x,s) for the K layer

can be determined by utilizing the condition that

= _ H . 1 _ =
tm—OatC——-z- (1.e.,r,x—0atc——l-2-1"
and the continuity condition

(k-1) _ (k)
Trx = Tx

where k denotes the layer number. These conditions translate into, respectively,

D =g = i, s)_{jf‘”(x, s)(—%l) +g0(x, s)%(—%t)z}

or

80

(5.33)

(5.34)

(5.35)
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W (x, 5) = {Jﬁ”(x, S)(—%l) +g.(x, S)%(—%i)z} (5.36)

and
C2
OO E {fi"’ e )G+ Ve, s)—z’f} -
(537
c2
hO(x, 5) - {fﬁ"’(x, o+ 80, s)—z’f}
or
é, 2
KO0 s) = K09+ (00 9 - £V NG+ @O0 )-8 NG 639

for k=2, 3, ..., n, where n is the total number of layers. The quantity {; is the interfacial location

between the ¥ and (k-1) layers.

In order to determine 7,,, eq. 5.18b is rewritten as follows:

aTn 2 _ 178 ,2 _ aas atxs
a r ,‘2[3?(’ W] -z ) ¢

Using eq. 5.20 and eq. 5.21, eq. 5.39 becomes

(o)

0 2 _ 0 s a‘t" 2
ZIRE) + 0l - I ORY (5.40)
Before éazl(R(s) + 4)2 7rs] can be integrated with respect to {to obtain 7, o, needs to be written

explicitly in terms of &, namely, from eq. 5.16, as

o, = 012(€2 + C)+ Oaa(e, + Gx) + O26(12, + CK2y) = 0, + (o, (5.41)

where,
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3 A 0 _ [*] A [+
o, = 0126, + 0226, + Q2674

K A o - [ s [+]
o, = Ok, + 02K, + K,

Within a layer these quantities do not vary with the thickness coordinate, ¢ Equation 5.40 can

(5.42)

now be written as,

do° 00, or, 61‘}

ZARG) + = (as G G (RE) O

do, 0 .0
=«[[af ’"J(R()w) +( ’+—’]4<R(s)+4)}

Equation 5.43 can be integrated with respect to {'to obtain

(5.43)

(R(s) + 4)2 Trs = ;1,(x, s) -
, (5.44)
[ 35w o) 25 G0 o)

where }At.(x, s) is another function of integration. Dividing eq. 5.44 by (R(s) + O’ yields

r = ;r.(x, s)
"+
(80’ a‘t’ ) (Rz(s) + ¢R(s) + ﬁ)c (60‘:_*_&'::] (Rz(s) + gCR(S) + 9; .(5.45)
ox Os (R(s) + 4) ox Os R(s) + 4)2

The terms in square brackets in eq. 5.45 can be simplified due to eg. 5.29. The numerator

term in the first square bracket in eq. 5.45 can be written as follows:

(R’(s) + CR(s) + Q R (s) 1 +R( 3 R(s))zj R(s) (5.46)

SO
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(R + ey +£)¢
®E)+ 9’

x4 (5.47)

Similarly

(R(s) + %‘;R(s) + 9523 g

) (5.48)
R(s) + 2
Therefore, eq. 5.45 can be reduced to
YO R AL
rs
(R(S) + 4)2 Oox os ox 2 (5.49)

= hy(x,9)- {fs(x, ¢+ &yl s>§}
where f,(x,s) and g,(x,s) are known for each layer at a given value of x and 5. The unknown func-

tion of integration term has been redefined to be A,(x,s). The function h,(k) (x,s) can be determined

utilizing the condition that

1,=0 atc=—%1 (i.e.,rﬁ)=0 atc=—%l) ' (5.50)

and the continuity condition,

r(k— n _ (l') i

rs I

5.5h

where k denotes the layer number. These conditions translate into, respectively,

D = g = i, 5)- {f“(x S)( H) + g, )l ( 1‘1)2} (5.52)

or

KV, s) = {f (x 9)(- H) +g0(x, S)%(—%l)z} (5:53)
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and

2
hﬁk— l)(x: S) - {fak— l)(x: S)Ck+ ggk— 1)(x’ s)gz_k} =

(5.54)

2
KOs, 5)- {fﬁ"’(x, ot g%}

or

2
W) = K 9+ 0w 9 £ 00 NG+ @ 9 -8 D NE 659

fork=2,3,..,n

The interlaminar stresses in principal material coordinate system can be obtained by trans-

k , k
Oyl _ |cosO —sinGy |7 (5.56)
o3 sin@, cosb||7,,

Tt should be noted that the schemes just described for computing the interlaminar stresses

formation, namely,

do not allow for enforcement of the conditions that the interlaminar shear stresses must be zero at
the outer radial location, just as they are at the inner radial location. That is, the conditions

=M =0atf= +%I 5.57)

cannot be explicitly enforced as there are not enough functions of integration h,(")(x,s) and

h,(k) (x,s) to allow enforcement. There is, therefore, no guarantee that the conditions of eq. 5.57

will be satisfied. As will be seen, they are not exactly satisfied.
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5.3 Character of Interlaminar Stresses

The interlaminar stresses for aluminum and composite circular and elliptical internally
pressurized cylinders are illustrated in figs. 5-3 - 5-6 to convey the character of the distribution
through the thickness, and to provide some insight into the magnitude of these stresses. These
stresses, 7, and 1, or in alternate notation 7~ and 7, are compared at the axial and circumferen-
tial locations where the magnitudes of the transverse shear force resultants, O, and Q,, given by
eq. 2.7, are maximum. Generally that location is xZ=0.5 and /C=0 with the exception of the alu-
minum elliptical cylinder, where the location is x/Z=0.5 and s/C=0.15625. These locations are at
the end of the cylinder where the condition w=0 is enforced. A review of fig. 2-7, for example,
shows the character of 0, and O, for both circular and elliptical cylinders. Of course the circular
cylinder is axisymmetric so the location s/C=0 is not unique.

For the aluminum circular cylinder, fig. 5-3, there is no interlaminar stress 7,,. Note that at
{=+H/2, the shear stress 1, is not quite zero. As just mentioned, this is due to the lack of enough

unknown functions of integration to uniquely specify the shear stress at both {=+H/2 and {=-H/2.
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Circular Elliptical
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Figure 5-3. Interlaminar shear stresses for an aluminum circular and elliptical cylinders,
p,=100 psi, x/L=0.5, s/C=0.0, except for 7,, for the elliptical cylinder where

8/C=0.15625

For the quasi-isotropic cylinder, and the other composite cases, the distributions of the
shear stresses are piecewise parabolic, as can be seen from the form of eqs. 5.32 and 5.49. The

interlaminar stress T, is larger than interlaminar shear stress 7., and it generally peaks at or near
£=0. The interlaminar shear stress T, generally peaks between the +45° and -45° layers and has a
lower value near {=0. Note that 1, is not zero at (=+H/2 and this is felt to be responsible for the

lack of symmetry, with respect to {=0, of the distribution of the interlaminar shear stresses.
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Figure 5-4. Interlaminar shear stresses for a quasi-isotropic circular and
elliptical cylinders, p,=100 psi, x/L=0.5, s/C=0.0
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Figure 5-5. Interlaminar shear stresses for an axially-stiff circular and elliptical cylinders,
P,=100 psi, x/L=0.5, s/C=0.0
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Figure 5-6. Interlaminar shear stresses for a circumferentially-stiff circular and
elliptical cylinders, p,=100 psi, x/L=0.5, s/C=0.0

5.4 Interlaminar Shear Stress Validation

As a check on the interlaminar stress calculations, the integrals of the interlaminar stresses
given by eq. 2.7 were compared with the transverse shear stress resultants, O, and Q,, as given by
the derivatives of the moments in eq. 2.6. Table 5-1 shows the comparison for the condition of
maximum O, and the maximum Q. In the table the values have been normalized by the quantity
PR, as has been done earlier, and the x and s location of the maximum value are indicated, along
with the percent error in the integral calculations.

The aluminum circular cylinder does not have a circumferential transverse shear force
resultant and the circumferential interlaminar shear stress integrated through the thickness reflects
zero response. The integrated axial interlaminar shear stress compared with the axial transverse

shear force resultant gives a small error of 3.2%. The aluminum elliptical cylinder shows similar
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results for I 7,,d¢ and 0,, but 'f 7,,d¢ and 0, show a slightly larger error of 7.1%. The compos-
ite cylinders also resulted in small differences between the transverse shear force resultants and
the integrated interlaminar shear stress. The average error between I’r,,dg' “and O, is 3.5% for the
circular composite cylinder and 2.5% for the elliptical composite cylinder. The average error
between I 7,,d¢ and Oy for both the circular and elliptical composite cylinders is 0.0%. These

errors are felt to be minimal.

This chapter has introduced the Hashin and maximum failure criteria, discussed the
approach for computing the inplane stresses, and presented a method for computing the interlami-
nar shear stresses that contribute to the failure criteria. The integral of the interlaminar shear
stresses through the thickness were compared to the transverse shear stress resultant to verify the
derivation of the interlaminar shear stresses. The difference between the integrated interlaminar

shear stresses and the transverse shear stress resultant was considered to be negligible.
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Table 5-1. Linear interlaminar shear stress comparison
Aluminum Quasi-isotropic Axially-stiff Circumferen-
tially-stiff
0, 0.06203 0.06035 0.08843 0.05050
J’-T dc 0.06402 0.06252 0.09092 0.05247
rx
% Error 3.2 3.6 28 3.9
3 | Location (0.5,0.0) (0.5,0.0) (0.5,0.0) (0.5,0.0)
3 | L0
© 0, 0 0.01010 0.01084 0.00970
e 0 0.01010 0.01085 0.00970
% Error 0 0.0 0.0 0.0
Location (0.5,0.0) (0.5,0.0) (0.5,0.0) (0.5,0.0)
(L,s/C)
O, 0.11291 0.11104 0.12662 0.10889
I—Trxdc 0.11564 0.11406 0.12921 0.11216
% Error 24 2.7 20 3.0
E Location (0.5,0.0) (0.5,0.0) (0.5,0.0) (0.5,0.0)
8 | WLsC)
%) 0, 0.00820 0.01894 0.01593 0.02138
Ii. d 0.00878 0.01895 0.01593 0.02140
rs
% Error 7.1 0.0 0.0 0.0
Location | (0.5,0.15625) (0.5,0.0) (0.5,0.0) (0.5,0.0)
(L,s/C)
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Chapter 6 Failure Predictions

Utilizing the approaches for computing the inplane and interlaminar shear stresses dis-
cussed in the previous chapter, this chapter will present a discussion of failure of internally pres-
surized elliptical cylinders. The Hashin and maximum stress failure criteria and geometrically

linear and nonlinear analyses will be considered to predict the location and mode of failure.

6.1 Failure Predictions for the Geometrically Linear Theory

The Hashin and maximum stress failure criteria were implemented in a FORTRAN code
using the stresses obtained for the geometrically linear analysis. The FORTRAN code computed
the stresses in the principal material coordinate system at an internal pressure of 100 psi, then
combined them as prescribed in egs. 5.5-5.7 for the maximum stress criterion and eqgs. 5.12-5.15
for the Hashin criterion. For the maximum stress criterion, the seven left-hand sides in the crite-
rion were then computed as a function of axial, circumferential, and through-thickness location.
The left-hand side that was the maximum was then singled out. For all cylinders, the maximum
left-hand side value was below unity, which implied that for an internal pressure of 100 psi failure
had not yet occurred. An internal pressure at which each cylinder would begin to fail, or the fail-
ure pressure, was predicted by linearly extrapolating, namely, multiplying the maximum left-hand

side of the equation by a variable ps such that,

(LHS 0 )pr= 1. 6.1)

It follows, then, that the failure pressure was given by
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- 1
Pr= 15— Po- (6.2)

max

where p, is 100 psi. The particular left-hand side which was maximum identified the failure

mode.

For the Hashin criterion, the four left-hand sides in the criterion were computed as a func-
tion of axial, circumferential, and through-thickness location. The left-hand side that was the
maximum was then singled out. Again, for all cylinders the maximum left-hand side value was
below unity. For the tensile modes of failure, the failure pressure was predicted by linearly extrap-
olating, namely, multiplying the maximum left-hand side of the equation by the square of a vari-

able pj such that,

(LHSmu)p} =1. 63)

It follows, then, that the failure pressure was given by

1l
LHS

max

Pr= Do 6.4)

where p,, is 100 psi. In the case of compressive matrix failure, failure pressure was determined by

-1\2 -\2
eq. 6.4if [(;—:J - 1] =0.K [(G—TJ - ljl # 0 , then the failure pressure was determined by

27

2
P, - (—biJ4a+b)po 69

2a

where

Oxn\2 . (0932 2 2
a= 2] +=2 +—1-(o + 073)
2 ) 12 13
T TT T
A

2l
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For compressive fiber failure, eq. 6.2 was applied. The particular left-hand side which was maxi-
mum identified the failure mode.

Table 6-1 shows the failure pressure and location for axially-stiff, quasi-isotropic, circum-
ferentially-stiff elliptical cylinders as predicted by the Hashin criterion. Recall, the axially-stiff
and circumferentially-stiff cylinders are nine layers thick and have a total thickness of H=0.0495
in., and the quasi-isotropic cylinder is eight layers with a total thickness /H=0.044 in. The location
of failure through the thickness is specified both by indicating the value of the { coordinate, and
by indicating the layer number and interface number for that layer. The footnote in the table
explains the layer and interface numbering scheme. The circumferential location is denoted by the
value of s/C. Also shown in table 6-1 are the values of the stress components at the location of
failure when the pressure equals the failure pressure. Note that in each case failure occurs at the
ends of the cylinders. This is due to effects associated with the clamped end conditions. It is
important to realize that there are two ends of the cylinder and the s/C location noted is the crown
location. There is a companion circumferential location in the keel where the failure conditions
are satisfied at exactly the same pressure. As can be seen, in all cases o3 is generally close to the
failure level of 7250 psi at the failure pressure (see eq. 5.1). In each case failure is attributed
mainly to tension in the matrix, or o;. For the quasi-isotropic and axially-stiff laminates failure
occurs at the inner radius and thus the interlaminar shear stresses do not contribute to failure of
these cylinders. As failure occurs in layer seven of the circumferentially-stiff laminate, near the
outer radius, the interlaminar shear stresses could contribute to the failure, but, in fact, are an
order of magnitude less than inplane stress o3, and therefore have little bearing on the failure pre-
dictions. In general, the interlaminar shear stresses are always an order of magnitude less than the

inplane stresses. Therefore, the interlaminar shear stresses can be computed from the geometri-
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cally linear equilibrium equations, as has been done in the preceding sections, with little effect on
the failure predictions for the geometrically nonlinear theory. Note that for the circumferen-

tially-stiff laminate failure occurs exactly at the two side locations, s/C=10.25, simuitaneously.

Table 6-1. Failure pressure and location for elliptical graphite-epoxy cylinders,
geometrically linear analysis, Hashin failure criterion

pr | loc* g s/C** | oy Ly T2 | U3 | T2
(psi) (psi) | (psi) | (psi) | (psi) | (psi)
Axially-stiff | 130.4 1/1 -0.0248 | -0.07 | 16200 | 6980 -3950 0 0
(+45)
Quasi- 1309 1/1 -0.0220 | -0.07 | 13200 | 6990 -3880 0 0
isotropic (+45)
Circumfer- | 106.7 7/2 0.0138 | +0.25 | 2180 7250 428 | 825 | -663
entially-stiff (90)

* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes the
inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.

*#* All failures occur at the ends of the cylinders: s/C=0 is crown, s/C=10.25 are sides,
C=circumference, s=arclength measure (see fig. 1-2)

As a comparison to the Hashin criterion, table 6-2 shows the failure pressure and location
for the three elliptical cylinders as predicted by the maximum stress criterion. Again the failure

mode is predicted to be due to o3 at the ends of the cylinders. The table shows the values of the
stresses at the location of failure when the pressure equals the failure pressure. Note that o equals
its failure value (see eq. 5.1). Any deviation from an exact 0,=7250 psi is due to round off and

other numerical anomalies that result from all the algorithms involved in the calculations. By
comparing tables 6-1 and 6-2 it is seen that the Hashin and maximum stress criteria both predict

similar scenarios, namely failure due to matrix cracking caused by high values of o; at very simi-

lar, if not identical, locations.
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Table 6-2. Failure pressure and location for elliptical graphite-epoxy cylinders,
geometrically linear analysis, maximum stress failure criterion

pr | loc* o SC* | o o2 T2 | Tz | T3
(psi) (psi) (psi) (psi) | (psi) | (psi)
Axially-stiff | 135.6 1/1 -0.0248 | -0.07 16800 7260 4110 0 0
(+45)

Quasi- 1356 | 1/1 | -0.0220 | -0.08 | 6790 | 7260 | -3840 0 | O
isotropic (+45)

Circumfer- | 1068 | 7/2 | 00138 | 025 | 2180 7250 | -4.28 | 82.6 | -663
entially-stiff (90)

* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes the
inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.

** All failures occur at the ends of the cylinders: s/C=0 is crown, s/C=10.25 are sides,
C=circumference, s=arclength measure (see fig. 1-2)

Since all the failures in table 6-1 and 6-2 are matrix cracking failures, these can be consid-
ered first ply, or initial, failures. Catastrophic failure of the cylinder is not expected. Increased
pressure capacity beyond the pressure levels in the tables is highly likely. However, when fibers
begin to fail, failure of the cylinder is more likely. Failure of fibers in tension will lead to
increased tension in the surrounding fibers. Failure of fibers in compression could lead to crush-
ing and deterioration of the material in the surrounding region. For either situation, there could be
a sudden cascading effect which would lead to catastrophic failure. Because of this, the pressures
required to produce first fiber failure were computed. Table 6-3 and 6-4 show these pressures.
These pressures were computed by ignoring all failures except fiber failure. For the Hashin crite-
rion, this means either eq. 5.12 or 5.13 governs failure, while for the maximum stress criterion,
this means the first of either eq. 5.5 or 5.6 governs. First fiber failures are predicted to be fiber
compression failure in all cases. The location is again at the ends of the cylinders. Fiber crushing

is predicted to occur at the outer radius, due to high bending effects. The predicted fiber failure
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pressures are about twice as high as the predicted matrix cracking pressures. The Hashin and max-
imum stress criteria predict identical results because for the fiber compression failure mode, the
Hashin criterion (eq. 5.13) and the maximum stress condition (the first of eq. 5.6) are identical
equations. It is interesting to note that at the locations where the fibers fail by compression, the

matrix is also in compression and near or beyond its failure level and the shear stress 7, is more

than one-half its failure level. Interlaminar stress does not play a role because of their small mag-
nitudes.

A comment is in order regarding failure due to internal pressure. By the nature of pressure,
a matrix crack in the inner layer will allow the pressure to reach the faces of the crack and perhaps
force them apart further than if, for example, a bladder was used inside the cylinder to contain the
pressure. In fact with a crack in the first layer and no bladder, the pressure reaches the second
layer from within. This pressure could act to separate the second layer from the inner layer. With a
bladder this would not happen, since the mechanics of force equilibrium around the crack would
be different with a bladder, the bladder still reacting to the pressure force despite the matrix crack.
It is not clear what the first matrix crack means in the presence of a bladder when compared to the
case of no bladder. It is felt that with no bladder the first matrix crack has the potential for trigger-

ing failure, whereas with a bladder it is felt the first matrix crack could well be inconsequential.
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Table 6-3. First fiber failure pressure and location for elliptical graphite-epoxy cylinders,
geometrically linear analysis, Hashin failure criterion

pr | loc* g S/C** o) o) T2 | Uz | T

(pst) (psi) (psi) (psi) | (psi) | (psi)

Axially-stiff | 242.1 9/2 0.0248 -0.08 | -180000 | -5860 | 7800 | -91.0 | 81.3
(+45)

Quasi- 2288 8/2 0.0220 | -0.07 | -180000 | -7070 | 8400 | -112 | 959
isotropic (+45)

Circumfer- | 2275 | 9/2 | 0.0248 | -0.06 | -180000 | -8710 | 9240 | -109 | 91.7
entially-stiff (+45)

* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes the

inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.

** All failures occur at the ends of the cylinders: s/C=0 is crown, s/C=10.25 are sides,
=circumference, s=arclength measure (see fig. 1-2)

Table 6-4. First fiber failure pressure and location for elliptical graphite-epoxy cylinders,
geometrically linear analysis, maximum stress failure criterion

pr | loc* o s/C** oy Ly T2 | 3 | T2

(psi) (psi) | (psi) | (psi) | (psi) | (psi)

Axially-stiff | 242.1 9/2 0.0248 | -0.08 | -180000 | -5860 | 7800 | -91.0{ 81.3
(+45)

Quasi- 2288 | 8/2 | 0.0220 | -0.07 | -180000 | -7070 | 8400 | -112 [ 95.9
isotropic (+45)

Circumfer- | 227.5 | 972 0.0248 | -0.06 | -180000 | -8710 | 9240 | -109 | 91.7
entially-stiff (+45)

* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes the
inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.

** All failures occur at the ends of the cylinders: s/C=0 is crown, s/C=10.25 are sides,
C=circumference, s=arclength measure (see fig. 1-2)

It was seen in chapter 3 that geometric nonlinearities have an influence on the response of

elliptical cylinders subjected to internal pressure. An important issue is how the inclusion of geo-

Failure Predictions 97



metric nonlinearities influences the predictions of failure. To that end, the next section addresses

the prediction of failure when geometrically nonlinear analyses are used.

6.2 Failure Predictions from the Geometrically Nonlinear Theory

To compute the failure pressure using the geometrically nonlinear analysis, iteration must
be used, each iteration using a different internal pressure. The first step in the iteration process fol-
lows the failure analysis for the geometrically linear case, namely, the analysis is conducted for a
pressure of p,=100 psi. Then, considering the maximum stress criterion as an example, the seven
left-hand sides of the failure criterion are computed, and using p,=100 psi the failure pressure is
computed using eq. 6.2. The geometrically nonlinear analysis is then conducted using this pre-
dicted failure pressure, i.e., now p, is the failure pressure predicted from the first step. The seven
left-hand sides are again computed and eq. 6.2 is used to compute a new failure pressure. If this
failure pressure prediction is within 10% of the first iteration’s failure pressure prediction, the iter-
ation process is considered converged. If the second failure pressure prediction is not with 10% of
the first prediction, the geometrically nonlinear analysis is repeated using the second failure pres-
sure prediction as p, and the failure predictions made again using eq. 6.2. A similar iteration pro-
cedure is used for the Hashin criterion based on eq. 6.2, 6.4, or 6.5 and the four left-hand sides in
that criterion.

Tables 6-5 through 6-8 represent the geometrically nonlinear case counterpart to tables 6-1
through 6-4, which were computed using geometrically linear analysis. Table 6-5 shows the fail-
ure pressure and location for axially-stiff, quasi-isotropic, and circumferentially-stiff elliptical
cylinders as predicted by the Hashin failure criterion. Also shown are the values of the stress com-

ponents at the location of failure when the pressure equals the failure pressure. Note that in each
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case failure occurs at the ends of the cylinders. As can be seen, in all cases o3 is generally near the

failure level of 7250 psi at the failure pressure and, therefore, in each case failure is attributed

mainly to tension in the matrix, or o;,. For the quasi-isotropic and axially-stiff laminates failure

occurs at the inner radius and thus again the interlaminar shear stresses do not contribute to this
failure of the cylinder. As failure occurs in layer seven of the circumferentially-stiff laminate, near
the outer radius, the interlaminar shear stresses could contribute to the initial failure, but, in fact,
are an order of magnitude less than inplane stress o, and therefore again have little bearing on the
failure predictions. Comparing tables 6-1 and 6-5, it is seen than nonlinearities are predicted to
have minimal influence on the failure predictions. The failure pressure levels for the axially-stiff
and quasi-isotropic cylinders are predicted to be slightly greater for the nonlinear analysis, and the
s/C locations of failure are predicted to be somewhat farther away from the crown, i.e., the s'C=0
location. On the other hand, compared to the geometrically linear case, the geometrically nonlin-
ear analysis for the circumferentially-stiff case predicts a slightly lower failure pressure but the

same &/C location.

Failure Predictions 99



Table 6-5. Failure pressure and location for elliptical graphite-epoxy cylinders,
geometrically nonlinear analysis, Hashin failure criterion

pr | loc* o s/C** | o L) T2 | T3 | T2
(psi) (psi) (psi) (psi) | (psi) | (psi)
Axially-stiff | 135.3 1/1 -0.0248 | -0.09 | 13100 | 6990 -3870 0 0
(+45)
Quasi- 134.1 1/1 -0.0220 | -0.10 4540 7020 -3650 0 0
isotropic (+45)
Circumfer- | 104.9 7/2 0.0138 | £0.25 | 2170 7230 -6.04 105 | -803
entially-stiff (+90)

* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes the
inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.

** All failures occur at the ends of the cylinders: s/C=0 is crown, s/C=10.25 are sides,
C=circumference, s=arclength measure (see fig. 1-2)

As a comparison to the Hashin criterion, table 6-6 shows the failure pressure and location
for the three elliptical cylinders as predicted by the maximum stress criterion and the geometri-
cally nonlinear analysis. Again the failure mode is predicted to be due to o; at the ends of the cyl-
inders. The table shows the values of the stresses at the location of failure when the pressure
equals the failure pressure. Note that o equals its failure value. By comparing tables 6-5 and 6-6
it is seen that the Hashin and maximum stress criteria both predict similar scenarios, namely fail-

ure due to matrix cracking caused by high values of o, at very similar, in not identical, locations.

Furthermore, by comparing tables 6-2 and 6-6, it is seen that accerding to the maximum stress cri-
terion, geometric nonlinearities predict slightly increased failure pressures for the axially-stiff and
quasi-isotropic cases, with the failures occurring somewhat farther away from the s/C=0 location.
For the circumferentially-stiff case, the nonlinear analysis predicts the same s/C location and a

slightly lower failure pressure. This relationship between linear and nonlinear analyses for the
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maximum stress criterion is identical to the relationship between linear and nonlinear analyses for

the Hashin criterion.

Table 6-6. Failure pressure and location for elliptical graphite-epoxy cylinders,
geometrically nonlinear analysis, maximum stress failure criterion

pr | loc* G s/C** | o o2 T2 | T3 | T3
(psi) (psi) (psi) (psi) | (psi) | (psi)
Axially-stiff | 140.3 1/1 -0.0248 | -0.10 7990 7250 -3860 0 0
(+45)
Quasi- 138.6 i1 -0.0220 | -0.10 4700 7250 -3780 0 0
isotropic (+45)
Circumfer- | 105.0 712 0.0138 | $0.25 2170 7250 -6.05 105 | -804
entially-stiff (90)

* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes the

inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.

** All failures occur at the ends of the cylinders: s/C=0 is crown, s/C=10.25 are sides,
=circumference, s=arclength measure (see fig. 1-2)

The pressure required to produce first fiber failure for the geometrically nonlinear cases
are shown in tables 6-7 and 6-8. Using the Hashin failure criterion, first fiber failures are pre-
dicted to be fiber compression failure in all cases except for the circumferentially-stiff laminate.
The location is again at the ends of the cylinders. Except for the circumferentially-stiff laminate,
failure is predicted to occur at the outer radius, again due to high bending effects. Note that for
these two cases of high fiber compressive stresses, the matrix is in a high compressive state and
the shear stress 7), is about one-half its failure level. Also for these two cases, compared to the
geometrically linear case of table 6-3, geometric nonlinearities lead to somewhat higher first fiber
failure pressures, and failure locations further away from s/C=0. The failure pressures for these
two first fiber failure cases are about a factor of two greater than the matrix failure pressures of

table 6-5, as in the linear case.
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The prediction for the first fiber failure for the circumferentially-stiff case in table 6-7 is
quite interesting. The Hashin criterion and the nonlinear analysis predict first fiber failure to be
tensile in the outer layer at the sides of the cylinder, whereas, according to table 6-3, the linear
analysis predicted fiber compressive failure in the outer layer at the crown of the cylinder. For the
nonlinear analysis of table 6-7, both ; and 7, are larger in magnitude than in table 6-3. Since the
Hashin criterion uses a combination of stresses, it appears that the high tensile o; and high values
of o, and 7;, for the geometrically nonlinear case combine to produce fiber tensile failure as
opposed to fiber compressive failure, and the location of failure is different. If the variation of cur-
vature with circumferential location at the end of the cylinder, particularly the sign change from
side to crown (see fig. A-15) is examined, it can be seen why the failure in the outer layer could be
tensile in the cylinder sides or compressive in the crown. For the circumferentially-stiff geometri-
cally nonlinear case, in addition to the failure mode changing relative to the linear case, the failure
pressure is higher. Also, the first fiber failure pressure predicted by the nonlinear analysis is, as
has been the case, about a factor of two greater than for the first matrix failure predicted by the

nonlinear analysis.
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Table 6-7. First Fiber failure pressure and location for elliptical graphite-epoxy cylinders,
geometrically nonlinear analysis, Hashin failure criterion

pr | loc* o s/C** | oy a; 112 T3 | 23

(psi) (psi) | (psi) | (psi) | (psi) | (psi)

Axially-stiff | 269.8 9/2 0.0248 | -0.11 | -180000 | -5070 | 7400 | -1590 | 1580
(+45)

Quasi- 260.6 8/2 0.0220 | -0.10 | -180000 | -5600 | 7660 | -1460 | 1460
isotropic (+45)

Circumfer- | 248.0 9/2 0.0248 | 0.24 | 153000 | 12100 | -10187 | -84.9 | 117
entially-stiff (+45)

* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes the
inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.

** Al failures occur at the ends of the cylinders: s/C=0 is crown, s/C=10.25 are sides,
C=circumference, s=arclength measure (see fig. 1-2)

As seen in table 6-8, the geometrically nonlinear analysis and the maximum stress crite-
rion predict first fiber failure to be compressive for all three laminates. Compared to the analog
geometrically linear analysis, table 6-4, the predicted failure locations are further away from the
s/C=0 location and the pressure levels are higher. Also compared to the geometrically nonlinear
maximum stress criterion analysis for matrix failure, table 6-6, the first fiber failure pressure for
the axially-stiff and quasi-isotropic laminates are about factor of two higher, for the circumferen-

tially-stiff laminate, the factor is about 2.5.
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Table 6-8. First Fiber failure pressure and location for elliptical graphite-epoxy cylinders,
geometrically nonlinear analysis, maximum stress failure criterion

pr | loc* g s/C** | oy ) T2 | T3 | T2
(psi) (psi) (psi) (psi) | (psi) | (psi)
Axially-stiff | 269.8 9/2 0.0248 -0.11 | -180000 | -5070 | 7400 | -1590 | 1580
(+45)

Quasi- 260.6 8/2 0.0220 | -0.10 | -180000 | -5600 | 7660 | -1460 | 1460
isotropic (+45)

Circumfer- | 266.0 | 9/2 | 0.0248 | -0.09 [ -180000 | -6380 | 8060 | -877 | 865
entially-stiff (+45)

* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes the
inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.

** Al] failures occur at the ends of the cylinders: s/C=0 is crown, s/C=10.25 are sides,
C=circumference, s=arclength measure (see fig. 1-2)

Tables 6-9 and 6-10 summarize the key results just discussed. Table 6-9 shows the failure
pressure, location, and mode of failure for both the Hashin and maximum stress failure criteria for
the cylinders. Results for both linear and nonlinear analysis have been included. As has been dis-
cussed, the differences in failure pressure and location of failure between linear and nonlinear
analysis are quite small. In each case failure is due to tension in the matrix. In a general sense,
both the axially-stiff and quasi-isotropic laminates are predicted to experience the first matrix
crack at around 130-140 psi in the first layer (a +45° layer) at the inner radial location at /C =
0.10. The circumferentially-stiff laminate is predicted to experience the first matrix crack at
around 105 psi in the seventh layer (a 90° layer) at the outer radial location at s/C = £0.25.
Whether failure is due to bending or inplane effect is examined by evaluating the part of the stress
that is contributed by bending effects and comparing it with the part contributed by inplane

effects. The ratio 0,/0, is the ratio of these two parts and the table shows that both the axially-stiff

and the quasi-isotropic laminates are predicted to fail due to bending effects. On the other hand,
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the circumferentially-stiff laminate is predicted to fail due to inplane effects. The bending effects

at the end are induced by the conditions of w=0 and

ox

ow =0 there, while inplane effects are induced

by the condition v=0 there and the inplane stress resultants caused by the internal pressure. Note

that for the axially-stiff and quasi-isotropic cases, geometric nonlinearities reduce bending effects

relative to inplane effects, whereas for the circumferentially-stiff case the reverse is true.

Table 6-9. Failure pressure, location, and mode for elliptical graphite-epoxy cylinders,
geometrically linear and nonlinear analyses, two failure criteria

Axially-Stiff Quasi-Isotropic Circumferentially-Stiff
Hashin Max o Hashin Max o Hashin Max o
Pp psi 130 136 131 136 107 107
5 | loc* 1/1 (+45) | 1/1 (+45) || 1/1 (+45) | 1/1(+45) || 7/2(90) | 7/2(50)
= C -0.0248 -0.0248 -0.0220 -0.0220 0.0138 0.0138
S/C** -0.07 -0.07 -0.07 -0.08 10.25 10.25
mode +o, +o, +0, +o, +o, +0,
0/ 0 3.3/1 3.3/1 4/1 2.86/1 0.33/1 0.33/1
== 4
Pf psi 135 140 134 139 105 105
g loc /1 (+45) | 1/1 (+45) || 1/1 (+45) | 1/1 (+45) || 7/2(90) | 7/2(90)
;% C -0.0248 -0.0248 -0.0220 -0.0220 0.0138 0.0138
g S/C** -0.09 -0.10 -0.10 -0.10 10.25 10.25
mode +0, +0, +o, +o, +o, +o,
0/ 2.7 2.3/1 2.2/1 2.2/1 0.38/1 0.38/1
* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes
the inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.
** All failures occur at the ends of the cylinders: s/C=0 is crown, s/C=10.25 are sides,
C=circumference, s=arclength measure (see fig. 1-2)
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Table 6-10 shows the failure pressure and location of failure for the Hashin failure crite-
rion and examines matrix (as seen in table 6-9) and fiber failure. Results for both linear and non-
linear analysis have been included. The most notable difference between first fiber and matrix
failure is the increase in failure pressure from 105-135 psi to 227-270 psi. This indicates that as
the pressure increases the matrix will fail long before the first fiber failure pressure is reached.
Also, from matrix failure to first fiber failure, the location of failure shifts dramatically from the
inside to the outside of the cylinder for the axially-stiff and quasi-isotropic laminates, and from
the outer 90° layer to the outer +45° layer for the circumferentially-stiff laminate. Geometric non-
linearities have a somewhat stronger influence on first fiber failure pressure as compared to
matrix failure, causing increases in failure pressure around 10%, as opposed to 2% for matrix fail-
ure pressures. Based on the nonlinear analysis, the axially-stiff laminate fibers fail at 270 psi in
the ninth layer, the outer +45° layer, on the outer interface at s/C = -0.11. The quasi-isotropic lam-
inate fibers fail at 261 psi in the eighth layer, the outer +45° layer, on the outer interface at 8/C =
-0.10. The circumferentially-stiff laminate fibers fail at 248 psi in the ninth layer, the outer +45°

layer, on the outer interface at /C = 0.24.
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Table 6-10. Failure pressure, location, and mode for elliptical graphite-epoxy cylinders,
geometrically linear and nonlinear analyses, two failure modes, Hashin failure criterion

Axially-Stiff Quasi-Isotropic Circumferentially-Stiff
Matrix Fiber Matrix Fiber Matrix Fiber
Ps psi 130 242 131 229 107 227
g loc* 1/1 (+45) | 9/2 (+45) || 1/1 (+45) | 8/2(+45) || 7/2(90) | 9/2 (+45)
8 ¢ -0.0248 0.0248 -0.0220 0.0220 0.0138 0.0248
s/C** -0.07 -0.08 -0.07 -0.07 +0.25 -0.06
mode +0, -01 +0, -0, +0, -0
0,/0; 33/1 1.25/1 4/1 1.3/1 0.33/1 1.25/1
—n—
P psi 135 270 134 261 105 248
4 loc* 1/1 (+45) | 9/2 (+45) || 1/1 (+45) | 8/2 (+45) || 7/2(90) | 9/2 (+45)
;% C -0.0248 0.0248 -0.0220 0.0220 0.0138 0.0248
g [scr  |-009 0.1 -0.10 -0.10 1025 | 024
mode +o, -0y +0, -0 +oy +o,
0 /0 271 1.2/1 2211 1.2/1 0.38/1 0.59/1
* Location is given as layer number/interface, where 1 is the innermost layer and 1 denotes
the inner and 2 the outer interface. The fiber direction of the layer is shown in parenthesis.
** A]] failures occur at the ends of the cylinders: s/C=0 is crown, s/C=10.25 are sides,
C=circumference, s=arclength measure (see fig. 1-2)

6.3 An Alternative View of Failure Predictions

With composite materials there is often scatter in the results of tests designed to determine
failure stresses. Considering the failure stress of a composite material to be exactly a certain level
is somewhat unrealistic. The scatter is due to small unpredictable irregularities in the microstruc-
ture of composites and possible anomalies in the manufacturing process. As a result, the location
with the highest stress may not fail first. A slightly lower stress at another location, coupled with a

microstructural irregularity, could lead to lower failure stress levels. To that end, the geometri-
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cally nonlinear failure analysis was used to compute the locations within the ellipse where the
seven left-hand sides in the Hashin failure criterion were within 20% of the failure level, i.e., the
left-hand sides were in the range 0.80 to 1.00, with 1.00 corresponding to the cases discussed in
table 6-5.

Figures 6-1 through 6-3 show the locations of the maximum left-hand side and all values
within 20% of the maximum value for the Hashin failure criterion for the axially-stiff, quasi-iso-
tropic, and circumferentially-stiff laminates. The axially-stiff, quasi-isotropic, and circumferen-

tially-stiff laminates were evaluated using nonlinear analysis at failure pressure, p,. In each figure

a greatly distorted view of the crown section of the cylinder wall through the thickness from
-H/2 < < H/2, around the circumference from -0.25 <'&/C <0.25, and at x/L=0.5 provides a
visual display of the points within 20% of failure. Each figure includes a table which lists in
descending order the location of the points, and stresses at those points at the failure pressure.
Figure 6-1 shows all points within 20% of the maximum left-hand side value for the axi-
ally-stiff laminate, which has a thickness, H, of 0.0495 in. As indicated in previous tables, the
maximum left-hand side value, or initial failure point, is located at the first layer, a +45° layer, at
the inner radial location of the cylinder at s/C=-0.09. Considering points where the left-hand side
is less than 1.00, the points are dispersed circumferentially on both sides of the initial failure
point, but remain in the first layer at the inner radial location. Eventually, the points reach to both
sides of the interface between the first and second layers. An alternative interpretation of the spa-
tial distribution of the points is that if the pressure is increased beyond the value to predict failure
at point 1, point 2 will be the next location of failure. Further increases in pressure would lead to
failure at points 3, 4, 5, etc. With this interpretation, then, it is felt that the geometric distribution

of points would represent the progression of damage as the pressure increases beyond the value
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necessary to have the Hashin criteria to equal 1.00. If this is the case, then, matrix cracking will

accumulate in layer 1 at the inner radial location ({=-0.02475) in the range -0.16 <s/C <°0. There

will also be cracking in layer 2 at the interface between the 1st and 2nd layers ({=-0.01925). All

these failures would be due to high values of ;.

0.02475
5
0.01925
45
0.01375
0
0.00825
[
{ 0.00275
)
-0.00275
[}
-0.00825
0
0.01375
-5
0.01825 VI A — |
3
0.02475 |+ EErSEBAEIIRIOA— v
£25 015 005 005 015 025
o/C
loc C C 5} a2 152 113 123
1 1/1 (+45) | -0.02475 -0.090 13100 6990 -3870 0 0
2 || 1/1 (+45) | -0.02475 -0.100 7700 6990 -3730 0 0
3 1/1 (+45) | -0.02475 -0.080 18500 6950 -4000 0 0
4 || 1/1 (+45) | -0.02475 0.110 2430 6950 -3570 0 0
5 1/1 (+45) | -0.02475 0.070 23900 6870 4110 0 0
6 || 1/1 (+45) | -0.02475 -0.060 29300 6770 -4200 0 0
7 1/1 (+45) | -0.02475 -0.120 -2710 6860 -3380 0 0
8 || 1/1 (+45) | -0.02475 -0.050 34700 6640 -4280 0 0
9 1/1 (+45) | -0.02475 -0.130 -7590 6710 -3170 0 0
10 || 1/1 (+45) | -0.02475 0.040 39900 6490 -4340 0 0
11 || 1/1 (+45) | -0.02475 -0.030 45100 6320 -4390 0 0
12 || 1/1 (+45) { -0.02475 0.140 -12100 6490 -2950 0 0
13 || 1/1 (+45) | -0.02475 -0.020 50100 6120 -4430 0 0
14 || 1/1 (+45) | -0.02475 -0.150 -16100 6220 -2700 0 0
15 {i 1/1 (H45) | -0.02475 -0.010 54900 5900 -4450 0 0
16 || 2/1 (-45) | -0.01925 0.110 -7030 6050 2850 -133 =775
17 |t 2/1 (-45) | -0.01925 0.100 -2500 6020 2960 -135 -812

Figure 6-1. Points within 20% of failure pressure, Hashin criterion, axially-stiff laminate,
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18 it 2/1(-45) | -0.01925 0.120 -11300 6040 2740 -132 -728
19 || 211 (45) | -0.01925 0.090 2210 5940 3050 -135 -841
20 |} /1 (45) | -0.01925 0.130 -15300 5980 2600 -129 671
21 || 122 (445) | -0.01925 -0.110 -8310 5930 -2770 -954 119
22 || 172 (+45) | -0.01925 <0.100 -3660 5910 -2880 -966 122
23 §i 1/1 (+45) | -0.02475 0.000 59600 5670 -4460 0 0

24 || 172 (+45) | -0.01925 0.120 -12700 5910 -2630 -938 113
25 || /1 (-45) | -0.01925 0.080 7050 5850 3130 -136 -865
26 | 1/2 (+45) | -0.01925 0.090 1180 5860 -2990 <972 125
27 || 2/1(-45) | -0.01925 0.140 -18700 5870 2460 -124 -599
28 || 172 (+45) | -0.01925 -0.080 6140 5780 -3070 -975 127
29 || 1/1 (+45) | -0.02475 -0.160 -19600 5870 -2440 0 0

30 §j 172 (+45) | -0.01925 ©0.130 -16800 5840 -2490 -911 107
31 || 271 (-45) | -0.01925 0.070 12000 5720 3210 -136 -883
32 || 12 (+45) | -0.01925 0.070 11100 5660 -3150 -976 129
33 || 1/1 (H45) | -0.02475 0.010 64200 5420 -4460 0 0

34 || 1/2 (+45) | -0.01925 -0.140 -20300 5720 -2330 -871 100
35 || 2/1(45) | -0.01925 0.060 17000 5580 3270 -136 -899
36 || 2/1(45) | -0.01925 0.150 -21600 5700 2290 -118 -514

Figure 6-1. Points within 20% of failure pressure, Hashin criterion, axially-stiff laminate,
nonlinear analysis, x/L=0.5

Figure 6-2 shows all points within 20% of the maximum left-hand side value for the
quasi-isotropic laminate, which has a thickness, H, of 0.044 in. As indicated in previous tables,
the initial failure point is located in the first layer at the inner radial location of the cylinder at
&/C=-0.100. Considering points where the left-hand side is less than 1.00, the points are dispersed
circumferentially on both sides of the initial failure point but remain in the first layer at the inner
radial location. Eventually the points reach to both sides of the interface between the first and sec-
ond layers, and the outer radial location of the eighth layer. An alternative interpretation of the
spatial distribution of the points is that matrix cracking will accumulate in layer 1 at the inner
radial location ({=-0.02220) in the range -0.16 <'s/C <0. There will also be cracking in layers 1
and 2 at the interface between these layers ({=-0.0165). Some cracking will also occur in layer 8

at the outer location ({=0.0220). All these failures would be due to high values of o;.
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0.0220
+45
0.0165
-5
0.0110
0
0.0055
¢
0.0000
90
-0.0055
0
0.0110
48
0.0165 1—————arove———— A
+45
0.0220 -+ NERERASMEDY— T
025 015 005 008 0.1§ 0.28
o/C
loc C C gy 5} ] 112 13 123
T || 1/1 (+45) | 00220 | -0.100 4540 7020 -3650 0 0
2 || 171 (+45) | -0.0220 .00 9800 7000 -3790 0 0
3 || 121 (+45) | -0.0220 -0.110 -567 7000 -3510 0 0
4 || 1/1 (+45) | -0.0220 -0.080 15200 6930 -3900 0 0
S || 111 (+45) | -0.0220 -0.120 -5470 6910 -3330 0 0
6 || 171 (+45) | -0.0220 -0.070 20500 6830 -3990 0 0
7 || 171 (+45) | -0.0220 0.060 26000 6710 -4080 0 0
8 | 171 (+45) | -0.0220 -0.130 -10100 6780 -3150 0 0
9 || 171 (+45) | -0.0220 -0.050 31500 6550 -4150 0 0
10 || 171 (+45) | -0.0220 -0.140 -14200 6580 -2930 0 0
11 || 171 (+45) | -0.0220 -0.040 36800 6380 -4200 0 0
12 || 171 (+45) | -0.0220 0.030 42200 6180 -4250 0 0
13 || 171 (+45) | -0.0220 0.150 -17900 6330 -2700 0 0
14 |j 1/1 (+45) | -0.0220 <0.020 47500 5970 -4280 0 0
15 || 2/1 (45) -0.0165 0.120 -14800 6040 2640 -154 -844
16 || 2/1 (-45) | -0.0165 0.110 -10900 6010 2740 -157 -902
17 || 21 (-45) | -0.0165 0.130 -18200 6020 2550 -150 -1
18 |] 1/1 (+45) | -0.0220 -0.160 -20700 6000 -2470 0 0
19 || 1/1 (+45) | -0.0220 -0.010 52600 5730 -4300 0 0
20 (| 2/1 (45) | -0.0165 0.100 6760 5930 2810 -159 -946
21 || 8/2 (+45) 0.0220 -0.230 32100 5810 -3790 -14.6 -3.36
22 || VY1 (-45) -0.0165 0.140 -21100 5960 2440 -142 679
23 || 172 (+45) | -0.0165 0.120 -16400 5870 -2520 -1060 130
24 || 872 (+45) 0.0220 -0.240 45000 5680 -4080 -15.4 6.02
25 || 172 (+45) | -0.0165 -0.110 -12500 5860 -2620 -1090 136

Figure 6-2. Points within 20% of failure pressure, Hashin criterion, quasi-isotropic
laminate, nonlinear analysis, x/1.=0.5
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26 }| 2/1(-45) | -0.0165 0.090 -2340 5830 2870 -159 -980
27 j| 12(+45) | -0.0165 -0.130 -19900 5850 -2410 -1020 121
28 || 12 (+45) { -0.0165 -0.100 -8190 5810 -2700 -1100 141
29 || 271 (45) | -0.0165 0.150 -23200 5830 2310 -132 -567
30 || 872 (+45) | 0.0220 <0.220 17400 5680 -3330 -11.5 -12.6
31 || 1/2 (+45) | -0.0165 <0.090 -3630 5720 -2790 -1120 144
32 |j 122 (+45) | -0.0165 -0.140 -22900 5770 -2290 -964 109
33 || 2/1(-45) | -0.0165 0.080 2290 5700 2930 -159 -1010
34 || 1/1(H45) | -0.0220 0.000 57600 5480 -4310 0 0
35 |} 1/2 (+45) | -0.0165 -0.080 1150 5600 -2850 -1120 148

Figure 6-2. Points within 20% of failure pressure, Hashin criterion, quasi-isotropic

laminate, nonlinear analysis, x/1.=0.5

Figure 6-3 shows all points within 20% of the maximum left-hand side value for the cir-

cumferentially-stiff laminate, which has a thickness, H, of 0.0495 in. As indicated in previous

tables, the initial failure points are located at the outer interface in the seventh layer, a 90° layer, at

s/C=40.25. Considering points where the left-hand side is less than 1.00, the points are located at

the outer interface of the seventh layer and inward of s/C=10.25. The points are also located at the

inner and outer interfaces of other layers, and inward of s/C=10.25. An alternative interpretation

of the spatial distribution of the points is that as pressure increases matrix cracking will accumu-

late in layer 7 at the outer interface location ({=0.01375) in the ranges -0.25 <s/C <-0.22 and

0.22 <s/C <0.25. There will also be cracking in layer 6 at the interface between layers 6 and 7

(¢=0.00825). Some cracking will also occur in layer 8 at the interface between layers 8 and 9

(£=0.01925), and at the outer radial location in layer 9 ({=0.02475). All these failures would be

due to high values of ;.

112

Failure Predictions



0.02475 4eee
+45
0.01825
45
0.01375
20
0.00825
0
¢ 000275
[}
0.00275
20
-0.00825
90
-0.0137%
-5
0.01825
+48
'O.&‘?S T 1 L) T
025 015 005 005 0.15 025
o/C
loc C C gy o)) T2 113 T3
1 7/2 (90) 0.01375 0.250 2170 7230 6.04 108 -803
2 712 (90) 0.01375 0.250 2170 7230 -6.04 105 -803
3 712 (90) 0.01375 0.240 2140 7130 547 332 -783
4 712 (90) 0.01375 0.240 2130 7100 -559 169 -760
5 712 (90) 0.01375 0.230 2030 6770 1080 404 -702
6 7/2 (90) 0.01375 0.230 2010 6710 -1090 221 658
7 6/2 (90) 0.00825 0.250 1940 6450 £6.04 105 -866
8 6/2 (90) 0.00825 0.250 1940 6450 -6.04 105 -866
9 7/1 (90) 0.00825 -0.250 1940 6450 £6.04 105 -866
10 §| 7/1 (50) 0.00825 0.250 1940 6450 6.04 105 -866
11 || 972 (+45) | 0.02475 0.230 42300 6070 -4190 2.88 -22.6
12 { 972 (+45) | 0.02475 -0.240 52400 6020 -4440 7.46 -17.8
13 || 6/2(90) 0.00825 -0.240 1910 6350 547 31.9 -844
14 1 7/1(90) 0.00825 0.240 1910 6350 547 319 -844
15 || 6/2(90) 0.00825 0.240 1900 6330 -559 171 -819
16 || 7/1 (90) 0.00825 0.240 1900 6330 -559 171 -819
17 || 7/2 (90) 0.01375 0.220 1860 6200 1570 -111 -571
18 || 972 (+45) | 0.02475 0.220 30800 5900 -3810 -0.861 -26.0
19 || 7/2(90) 0.01375 0.220 1830 6100 -1580 259 -508
20 || 972 (+45) | 0.02475 0.250 60500 5720 -4510 12.6 -12.2
21 || 972 (+45) | 0.02475 0.250 60500 5720 -4510 12.6 -12.2
22 |l 6/2(90) 0.00825 -0.230 1810 6060 1080 -43.4 -759
23 il 7/1 (90) 0.00825 0.230 1810 6060 1080 -43.4 -759
24 || 6/2(90) 0.00825 0.230 1800 6020 -1090 225 -710
25 || 7/1 (90) 0.00825 0.230 1800 6020 -1090 225 -710

Figure 6-3. Points within 20% of failure pressure, Hashin criterion, circumferentially-stiff
laminate, nonlinear analysis, x/1~0.5
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26 || 9/1 (H45) | 0.01925 0.230 37400 5610 -3840 394 -124
27 || 7/2(90) | 0.01375 0.250 4260 5920 372 57.0 -433
28 || 7/2(90) | 0.01375 0.250 4260 5920 372 57.0 -433
29 || 9/1 (+45) | 0.01925 0.240 47100 5510 -4050 495 -127
30 || 8/2(-45) | 0.01925 0.230 36700 5560 3780 87.8 550
31 ]| 8/2(45) | 0.01925 0.240 46600 5480 4020 108 577
32 || 7/2(90) | 0.01375 0.240 4250 5830 -556 78.0 415
33 | 7/2(90) | 0.01375 -0.240 4210 5830 548 325 -421

Figure 6-3. Points within 20% of failure pressure, Hashin criterion, circumferentially-stiff

laminate, nonlinear analysis, x/1=0.5

This chapter has presented a comprehensive discussion of failure of internally pressurized

elliptical cylinders. The Hashin and maximum stress failure criteria, geometrically linear and non-

linear analyses, and first matrix failure and first fiber failure were considered. Additionally, the

concept of an accumulation of matrix cracks was introduced. It was shown that for the first matrix

failure there was not much difference between the predictions of the two failure criteria or

between linear and nonlinear analyses. However, the predicted pressure to cause first fiber failure

was about a factor of two higher than the predicted pressure to cause matrix failure. Additionally,

considering nonlinear analysis, the Hashin prediction of first fiber failure for the circumferen-

tially-stiff laminate was quite different than the prediction of the maximum stress criterion. The

mode and location differed significantly, and the pressure levels were somewhat different. The

next chapter summarizes this entire study, presents conclusions, and provides ideas for future

work.
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Chapter 7 Conclusions and Future Work

This chapter summarizes this entire study, presents conclusions, and provides ideas for

future work.

7.1 Summary

Using numerical results, a thorough explanation was given of the effects of cylinder
geometry, specifically, circular vs. elliptical cross sections, and geometric nonlinearities on cylin-
der responses. Also, the effects of orthotropy were studied using quasi-isotropic, axially-stiff, and
circumferentially-stiff graphite-epoxy laminates. Displacements, reference surface strains and
curvatures, and force and moment resultants were used to define cylinder responses. The Hashin
failure theory and the maximum stress theory were used to assess the pressure capacity of ellipti-
cal composite cylinders. Interlaminar shear stresses were considered in the assessment of pressure
capacity by integrating the geometrically linear equilibrium equations of elasticity in polar coor-
dinates through the thickness at the cylinder wall. These interlaminar shear stresses together with
the inplane (intralaminar) stresses were used in the failure theories. Failure pressure levels, failure

location, and failure modes were studied.

7.2 Conclusions

The effects of elliptical geometry as discussed in chapter 2 include several key issues. For

instance, responses for the elliptical case vary with both the x and s coordinate. This variation is
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seen in every elliptical response, either over the entire domain, or at the boundary. For the ellipti-
cal cylinder:

«axial responses are compressive at certain locations for axial displacement, axial strain,
and the axial force resultant, despite the axial tensile effect of the internal pressure on the
cylinder end plates

«the circumferential displacement and shear force resultant are not zero, whereas, both of
these responses are zero for the circular cylinder

«the normal displacement can be negative

«the shear strain is as large, or larger, than axial and circumferential strain, whereas, it is
zero for the circular cylinder

«the circumferential and twist curvatures are not zero at the midspan, whereas, both of
these responses are zero at the midspan for the circular cylinder

«an ellipticity of 0.7 causes a change in sign of the response at the boundary for axial cur-
vature, all moment resultants, and the shear force resultants as s varies from s/C =0 to
s/C = 0.25. Tt is felt less severe ellipses, e.g., an ellipticity of 0.90, may not experience
these sign reversals.

The differences between the geometrically linear and nonlinear analyses considered here
are strictly due to the nonlinear terms in the strain-displacement equations. Chapter 3 examines
the differences between linear and nonlinear analyses created by these nonlinear terms. The
effects of geometric nonlinearities seen in this chapter include several key issues. Between linear
and nonlinear analyses:

«a smaller axial end displacement, 4, is required to satisfy axial equilibrium

«the axial displacement displays an overall difference in magnitude
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sthe circumferential displacement has a shift of the location of the extreme value

«the normal displacement flattens at the crown of the cylinder.
Aside from the displacements, differences between linear and nonlinear analyses, if any exist,
seem to split into two categories: those due to flattening of the crown of the cylinder, and those;
involving a change in magnitude of the behavior at the boundary. Flattening of the crown of the
cylinder is seen in:

sthe circumferential strain

«the circumferential curvature

«the circumferential force resultant.
The change of the behavior at the boundary is seen in:

«the axial curvature

«the axial and circumferential transverse shear force resultants, O, and 0.
The moment resultants show both behaviors, a flattening in the crown and a change of magnitude

at the boundary. Also, two definitions of the transverse force resultants, ¥, and 7, are introduced

for the nonlinear case. There are significant differences between the circumferential transverse
shear force resultant, 0,, and the circumferential transverse force resultant, V.

In chapter 4 the focus is shifted from the influence of elliptical geometry and geometric
nonlinearities to the influence of material orthotropy. Each laminate has a different response to
internal pressure due to the percentages of fibers in the axial and circumferential directions. The
axially-stiff, circumferentially-stiff, and quasi-isotropic laminates result in an overall difference in
magnitude for the axial, circumferential, and normal displacements. In fact, the axially-stiff ellip-

tical cylinder evaluated using nonlinear analysis contracts axially in response to internal pressure,
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whereas, for the other two cases there is axial extension. For some responses orthotropy mitigates
the effect of ellipticity. For example:

«the circumferential strain behaves like that of a circular cylinder in the midspan region of
the circumferentially-stiff laminate, namely being independent of circumferential loca-
tion

ofor the axially-stiff laminate, the axial strain displays less spatial variation with both x and
s compared to the axial strains for the circumferentially-stiff and quasi-isotropic lami-
nates.

The variation with s at the clamped boundary depends significantly on orthotropy for:

sthe axial curvature

sthe circumferential force resultant

sthe circumferential moment resultant

«the transverse force resultants.

Compared to the circumferentially-stiff and quasi-isotropic laminates, for these responses, the
axially-stiff laminate does not generally exhibit as much variation with s.

In chapter 5, an evaluation of material failure using the maximum stress and Hashin fail-
ure criteria is presented for elliptical cylinders by considering geometrically linear and nonlinear
analyses and quasi-isotropic, axially-stiff, and circumferentially-siff laminates. Also, the
approach is discussed for computing the inplane stresses, and a method is presented for comput-
ing the interlaminar shear stresses that contribute to the failure criteria. The integral of the inter-
laminar shear stresses through the thickness are compared to the transverse shear stress resultant
to verify the derivation of the interlaminar shear stresses. The difference between the integrated

interlaminar shear stresses and the transverse shear stress resultant is considered to be negligible.
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In chapter 6, the Hashin and maximum stress failure criteria and geometrically linear and
nonlinear analyses are considered in order to predict the location of failure, mode of failure, and
the pressure at failure. First matrix failure and first fiber failure are considered. Additionally, the
concept of an accumulation of matrix cracks is introduced. Catastrophic failure is not expected at
initial failure due to matrix cracking. Catastrophic failure due to fiber failure is more likely. For
the geometrically linear analysis:

sthe Hashin and maximum stress criteria both predict failure due to matrix cracks due to

high values of o5 at very similar, if not identical, pressure levels and locations

“first fiber failure is predicted to be fiber compression for all cases at identical locations

for the Hashin and maximum stress criteria

«pressures for first fiber failure are about twice as high as for matrix cracking pressures

sthe contributions of the interlaminar shear stresses to failure were small.
For the geometrically nonlinear analysis:

«the Hashin and maximum stress criteria both predict failure due to matrix cracks due to

high values of o at very similar, if not identical, pressure levels and locations

«slightly higher failure pressures at locations somewhat farther from the crown are pre-

dicted for the quasi-isotropic and axially-stiff laminates compared to the geometrically
linear case

«slightly lower failure pressures but identical locations are predicted for the circumferen-

tially-stiff laminate compared to the geometrically linear case

first fiber failure for the Hashin criterion is predicted to be fiber compression for the axi-

ally-stiff and quasi-isotropic laminates at pressures higher than first fiber failure for the

geometrically linear case
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«first fiber failure for the Hashin criterion is predicted to be fiber tension for the circumfer-
entially-stiff laminate at a higher pressure and different location than first fiber failure
for the geometrically linear case

«first fiber failure for the maximum stress criterion is predicted to be fiber compression for
all cases at higher pressures at locations farther away from s/C = 0 than first fiber failure
predicted using a geometrically linear analyses.

For all cases, axially-stiff and quasi-isotropic laminates are predicted to fail due to bending effects
and the circumferentially-stiff laminate is predicted to fail due to inplane effects. The differences
in the predictions of the two failure criteria as expressed in the last three bulleted points is consid-

ered significant.

7.3 Future Work

7.3.1 Numerical

Future work will focus on a progressive failure analysis. This will mean moving beyond
the first ply failure analysis and reaching the point of having a significant number of fibers fail.
Since the initial failure will take place at certain circumferential, i.e., s/C, locations and not others,
degraded material properties are to be incorporated only in the affected locations. This will make
the analysis much more difficult than if material properties of the cylinder are the same at all loca-
tions. Therefore the finite element program STAGS will be used to study the progressive failure
analysis. This will involve doing a sequence of analyses, each with a different distribution of
material properties, the distributions reflecting the progressive degradation of material properties

as the pressure increases.
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7.3.2 Experimental

For the experimental phase of the work, existing elliptical cylinders will be prepared for
pressure testing in the Structural Mechanics Branch of the NASA-Langley Research Center. This
will involve C-scanning the cylinders for any material imperfections, then scanning the geometry
to determine the exact shape of the cylinders. End fittings will have to be attached and strain
gages mounted. The end fittings will be ones specially-designed for pressure testing. Testing to

bursting failure will then take place.
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Appendix A Comparison between Present and STAGS Results

In this appendix the displacement, strain, and stress resultant responses are shown for
eight and nine layer graphite-epoxy cylinders with semi-major diameters of 5 in., ellipticities of
0.7, and lengths of 12.5 in. These responses are computed with the semi-analytical solution of the
present study and with the finite element code STAGS [A-1]. Only geometrically nonlinear analy-
ses are considered. The material and geometric properties of a layer of graphite-epoxy are taken to
be

E, = 1885 Msi E, = 1407 Msi
sz = 0.725 Msi Vi = 0.300 h = 0.0055 in.

(A1)
where % is the thickness of a single layer. The laminates considered are: quasi-isotropic,
[£45/0/90]; axially-stiff, [£45/0,/90y]s; circumferentially-stiff, [£45/90,/0,]s, where 0 degrees
is in the axial direction.

The mesh for the semi-analytical solution has 125 finite-difference nodes in the axial
direction and 100 nodes around the circumference for a total of 12,500 nodes. In the axial direc-
tion the distance between nodes is adjusted by the finite-difference scheme according to the mag-
nitude of the axial gradients in the response quantities. In the circumferential direction the
distance between nodes is 0.2718 in. The STAGS mesh has 41 nodes in the axial direction and 97
nodes around the circumference, for a total of 3997 nodes and 3840 elements. The nodes are equi-

spaced in both directions and the length of the element is 0.3125 in. in the axial direction and

02803 in. in the circumferential direction. Essentially, the mesh is finer in the present solution
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than for the STAGS solution. The difference in the mesh between the present and STAGS solution
is most significant in the axial direction, as is apparent in figs. A-1 - A-18.

For the STAGS solution the displacements are computed at the nodes. The strains, curva-
tures, force resultants, moment resultants, and shear force resultants are computed at the Gauss
points, which are located at the center of the element. Therefore, for the STAGS solutions there
are no results for the ends of the cylinder, which is where failure is predicted to occur. By increas-
ing the number of points in the axial direction, the Gauss points can approach the ends of the cyl-
inder, but they can never reach the ends. For this reason, a failure prediction using STAGS results
will not agree with a failure prediction using the present analysis. For a given failure criterion,

STAGS will be nonconservative.
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Figure A-1 Comparison between present solution and STAGS for a quasi-isotropic
elliptical cylinder, e=0.7, p,=100 psi: displacements
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Present Solution

ent solution and STAGS for a quasi-isotropic
100 psi: reference surface curvatures
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Figure A-3 Comparison between pres
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Present Solution

Figure A-4 Comparison between present solution and STAGS for a quasi-isotropic
elliptical cylinder, e=0.7, p,=100 psi: moment resultants
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Present Solution

Figure A-6 Comparison between present solution and STAGS for a quasi-isotropic
elliptical cylinder, e=0.7, p,=100 psi: transverse shear force resultants
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Figure A-7 Comparison between present solution and STAGS for an axially-stiff
elliptical cylinder, e=0.7, p,=100 psi: displacements
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STAGS

Present Solution

100 psi: reference surface curvatures

Figure A-9 Comparison between present solution and STAGS for an axially-stiff
elliptical cylinder, e=0.7, p,
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Present Solution

Figure A-10 Comparison between present solution and STAGS for an axially-stiff
elliptical cylinder, e=0.7, p,=100 psi: moment resultants
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Present Solution

Figure A-12 Comparison between present solution and STAGS for an axially-stiff
elliptical cylinder, e=0.7, p,=100 psi: transverse shear force resultants
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Present Solution

Figure A-13 Comparison between present solution and STAGS for an circumferentially-stiff
elliptical cylinder, e=0.7, p,=100 psi: displacements
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Present Solution

Figure A-16 Comparison between present solution and STAGS for an circumferentially-stiff
elliptical cylinder, e=0.7, p,=100 psi: moment resultants
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Present Solution

Figure A-18 Comparison between present solution and STAGS for an circumferentially-stiff
elliptical cylinder, e=0.7, p,=100 psi: transverse shear force resultants
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Appendix B Axial Displacement Required for each Pressure

Due to the assumed rigid end plates, clamped-clamped boundary conditions are applied to
each end of the cylinder, with the exception of allowing the end at x = +L/2 end to expand uni-
formly in the axial direction with displacement A. The end at x = -L/2 cannot move axially in
order to restrict axial rigid body translation. Formally, the boundary conditions at the ends of the

cylinder (x = £./2) are as follows:

i)u =0@x = é—‘ u°=A@x=+%

ii) vV =0 |
iii) w2 =0 @1
-

— = 0.
iv) &

The end displacement 4 is determined by enforcing axial equilibrium of the end enclosure at x =

+L/2, namely,

f; N ds = p,nab, ®2)
where N, is the axial force resultant within the cylinder, C is the circumference of the cylinder ref-
erence surface, and the cross-sectional area of the ellipse is zab. Physically, eq. B.2 states that the
net axial force due to the internal pressure times the cross-sectional area of the end enclosure must
be balanced by the net axial force due to the axial force resultant.

Tables B-1 and B-2 show the end displacements A used for various internal pressure val-

ues for the quasi-isotropic, axially-stiff, and circumferentially-stiff laminates evaluated using lin-
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ear and nonlinear analyses, respectively. Since table B-1 shows the end displacements for each
laminate evaluated using linear analysis, only one internal pressure value is needed. The end dis-
placement can be determined for any other internal pressure by linearly extrapolating. The cir-
cumferentially-stiff laminate requires the largest end displacement A to satisfy axial equilibrium,
whereas the axially-stiff laminate requires the smallest end displacement 4. This can be
explained by considering the percentage of fibers along the axial direction. The circumferen-
tially-stiff laminate has fewer fibers in the axial direction than the quasi-isotropic and axially-stiff
laminates. Therefore, the circumferentially-stiff laminate provides less resistance to expansion in

the axial direction.

Table B-1. End displacement required to satisfy axial equilibrium corresponding to an
internal pressure evaluated using linear analysis

Quasi-isotropic Axially-stiff | Circumferentially-stiff
Pressure 100 100 100
(psi)
A4 0.002391 0.000326 0.005627
(in)

For the nonlinear analyses, the end displacements cannot be obtained through linear
extrapolation, as seen in table B-2. In the nonlinear case, lineady extrapolating overestimates the
end displacement A4 necessary to satisfy axial equilibrium. Therefore, for each pressure used the
end displacement A must be determined. Again, the circumferentially-stiff laminate requires the

largest end displacement A to satisfy axial equilibrium.
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Table B-2. End displacement required to satisfy axial equilibrium corresponding to an
internal pressure evaluated using nonlinear analysis

Quasi-isotropic Axially-stiff Circumferentially-stiff
Pressure 100 100 100
(psi)
4 0.002039 -0.000061 0.005349
(in.)
Pressure 130 130 240
(psi)
a4 0.002536 0.000208 0.012180
(in.)
Pressure 250 250
(psi)
a4 0.004137 0.001240
(in)

In general, the end displacement A required for the nonlinear case is smaller than for the
linear case. The most significant difference is seen with the axially-stiff laminate for 100 psi. The
axially-stiff laminate evaluated using linear analysis extends 0.000326 in. but contracts -0.000061
in. when evaluated using nonlinear analysis. Recalling the definition of axial reference surface

strain,

2
o _ ou’ 1a'w°)
£-2 %) &)

the difference in the axial displacements between the linear and nonlinear case exist in the under-

lined term. With the addition of the underlined term for the nonlinear case, the end displacement

is more sensitive to outward or inward wall deflection caused by the internal pressure.
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Manufacturing Distortions of Curved
Composite Panels

T. T. OCHINERO and M. W. HYER

ABSTRACT

This paper briefly discusses the influences of through-thickness thermal expansion,
a misaligned ply, and a resin-rich slightly thicker ply on the deformations of a
curved composite laminate during cool down from the cure temperature. Both two-
dimensional and three-dimensional level finite-element analyses are used. The
deformations are categorized as to radial and tangential deformations and twist, and
for each of the three influences these deformations are quantified. An additional
outcome of the study is an indication of the level of analysis needed to study each
of these three influences.

INTRODUCTION

When manufacturing flat and curved composite panels, the intention is to produce
panels with specific geometric properties, i.e., length, width, radius of curvature,
etc. Often, upon completion of the various stages of the manufacturing, and after
the panel has cooled to room temperature and has been removed from the tool, hot
press, or autoclave, the dimensions of the panel are not as intended. Focusing on
curved panels, the lack of the proper radius of curvature and the presence of twist
in the panel are among some of the problems. This lack of dimensional fidelity can
be thought of, and are often spoken of, as a manufacturing distortion or warpage.
Distortion can be a serious problem because it means that panels must be forced to
fit onto existing frames or stiffeners arrangements, or forced to fit with other panels
to make up a complete structure. This forcing to achieve a fit can lead to unwanted
stresses that lead to fatigue or other stress-related problems and, in the case of
production-level quantities, a lack of quality control.

T. Thomas Ochinero and M. W. Hyer
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061.



The goals of this paper are to: (1) categorize the types of distortions that can occur;
(2) illustrate that there are inherent, or natural, deformations that occur due to the
thermal expansion behavior of composite materials and a curved geometry, and
occur in so-called perfect panels; (3) quantify the levels of distortions predicted as
a function of the level of refinement of the analysis tool. The paper will lead the
reader through the mechanisms and considerations that account for some of the
manufacturing distortions of curved composite panels. A very specific problem will
be considered, namely, a four-layer graphite-epoxy panel with a 150 in. radius of
curvature, a 60° opening angle, and a 150 in. length. The 150 in. radius and 60°
opening angle lead to an arc length of approximately 150 in. The specific lay-up is
nominally [+6°]s , with 8 varying from 0° to 90°. The radius to thickness ratio R/H
is 600. The angle 0 is measured relative to the axial direction, values of 8 between
0° and 30° corresponding to axially stiff panels and values between 60° and 90°
corresponding to circumferentially stiff panels. Manufacturing distortions are
predicted using two-dimensional and three-dimensional ABAQUS models of the
panel, the latter to capture the influences of through-thickness effects, assuming
there are any. The two-dimensional ABAQUS models were constructed of 392
S8R5 8-noded shell elements. The three-dimensional ABAQUS models were
constructed of 1568 C3D20 20-noded solid brick elements.

It is assumed the manufacturing process can be divided into three stages. Stage one
is the room-temperature lay-up stage. In this stage the prepreg material is applied to
a tool, either by hand or by an automated process. At this stage there can be
variations in ply thickness, both within a ply and from ply to ply; there can be ply
waviness, i.e., the fibers are not straight within a layer, rather they form either long
or short wavelength 'S' patterns; there may be gaps in the prepreg; uneven resin
distribution; and broken fibers. In addition, a given ply alignment may be slightly
different than the intended alignment. All of these effects, particularly the latter,
can lead to unwanted changes in the geometry of the panel. Stage two consists of
consolidation and curing of the laminate at elevated temperatures and pressures.
During this time a number of influences are possible. Temperature gradients along
the length or circumference can lead to different curing conditions in different
regions of the panel. These different curing conditions can result in spatially
nonuniform mechanical and thermal expansion properties. As resin bleed, and
therefore ply thickness and fiber volume fraction, depend on compaction pressure,
variations in pressure from location to location can lead to spatially nonuniform ply
properties, both in the lengthwise and circumferential directions, and also in the
thickness direction. It is also possible that during this second stage ply shifts cause
fiber misalignments. If a panel is consolidated and cured in multiple steps, such as
with a sandwich panel, for example, other problems can occur during this stage.
The third stage in the process is cooling and removal from the tool. Though most of
the factors which cause distortions have occurred before this stage, it is during this
third stage that the factors become evident. There can be actual failures of the



material during cooling, and closed sections can become bound on the tools,
thereby requiring force to remove them.

Of all these influences, three will be considered here. The first will be that of the
inherent difference in through-thickness thermal expansion of composite material
relative to the inplane thermal expansion. This effect is responsible for spring-in
and spring-out. The second influence will be that of ply misalignment, and the third
will be that of a slightly thicker ply. The first influence cannot be avoided; the
second and third ones can.

For purposes of discussion, it is convenient to define warpage metrics that will be
used to describe and compare the deformation of the panel. Figure 1 shows the
three primary warpage metrics that will be repeatedly utilized throughout the rest of
this paper. For consistency, the displacement data presented here will be of a corner
of the panel. Radial gap, AR, is defined as the radial displacement of the corner
node, measured in inches. A positive radial gap corresponds to a spring-out of the
panel. Tangential gap, AT, is defined as the circumferential displacement of the
corner node, measured in inches. A positive gap corresponds to an increase in panel
arc length. Finally, twist, ¢, measured in degrees, is the angle that the two
originally parallel sides make after the thermal load is applied.

BASELINE

It is useful to consider the radial and tangential gaps and the twist of a [+8°]s
laminate due to a -300° F temperature change, representing cool-down from curing,
as predicted by classic two-dimensional analysis employing the plane-stress and
Kirchhoff assumptions. This would perhaps be the analysis level initially used to
study manufacturing distortions. As a baseline, consider that all plys are oriented as
intended, and all ply thicknesses are uniform and identical, i.e., the curved panel is
perfect. In Fig. 2 the solid line with the circles shows the relationship between
radial gap and 0. The horizontal axis in Fig. 2 is the angle 6 as it is varied from 0°
to 90°. The vertical axis is the radial gap. As can be seen, for small values of 8, the
panel is predicted to exhibit slight spring-in (approx. 0.1 in.), while for 8 greater
than 48°, minimal spring-out is predicted. Focusing on the solid line with circles in
Fig. 3, the tangential gap varies from a circumferential contraction of -0.3 in. at 6 =
0° to no gap at 6 = 48° and finally to a small expansion for O greater than 48°. For
this perfect baseline case and the two-dimensional analysis, for all 0, the tangential
gap and the accompanying radial gap are due simply to the circumferential
coefficient of thermal expansion of the [+8°]s laminate which can be computed
quite readily from classical lamination theory [1]. For the baseline case, as shown
in Fig. 4, it is predicted that no twist develops for any value of 6.
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EFFECT OF THROUGH-THICKNESS THERMAL EXPANSION

With fiber-reinforced composite materials, the through-thickness thermal
expansion coefficient is considerably larger than the thermal expansion coefficient
in the fiber direction. As a result, a curved laminated panel can have a
circumferential coefficient of thermal expansion that is smaller than coefficient in
the thickness direction. When the temperature is changed, this can result in
thermally-induced circumferential stresses that lead to a net thermally-induced
circumferential moment which is directly responsible for spring-in or spring-out,
depending on the sign of the moment [2,3]. To account for the effect of the
differences between circumferential and through-thickness thermal expansion
coefficients, something other than a classic two-dimensional analysis must be used.
Here a fully three-dimensional finite-element model was used. Note that two-
dimensional models do not require information regarding the through-thickness
thermal expansion coefficient, or any other out-of-plane property for that matter. In
addition, with two-dimensional analyses three of the six stress components are
equated to zero, and the displacements are assumed to vary in specific manners as a
function of the laminate thickness coordinate. None of these restrictions are present
in a three-dimensional model. In Fig. 2, the dashed line with circles illustrates the
predicted radial gap of the perfect panel as a function 0 using a three-dimensional
analysis. Note that at small values of 0, a condition that results in similar values for
the through-thickness and circumferential thermal expansion coefficients, there is
not much difference between the spring-in predictions of the two-dimensional
model and the predictions of the three-dimensional model. However, for increasing
0, a condition which leads to larger values of the through-thickness thermal
expansion coefficient than circumferential thermal expansion coefficients, the
predictions of the two analyses diverge. For O greater than 48 °, the two-
dimensional analysis predicts spring-out and the three-dimensional analysis
predicts spring-in. (That the spring-in prediction of the three-dimensional analysis
appears to be independent of © is the result of certain effects dominating for one
range of 0 and other effects dominating for other ranges of 8. This is opposed to
one effect being present in the three-dimensional analysis that is absent in the two-
dimensional analysis and dominating for the entire range of 0.) The tangential gap,
in Fig. 3, is not significantly influenced by three-dimensional effects, as evidenced
by the closeness of the solid and dashed lines with circles for all 0. Interestingly,
the three-dimensional model predicts a slight twisting, even for perfect laminates.



EFFECTS OF PLY MISALIGNMENT

As mentioned, a misaligned ply can occur during the manufacturing of a composite
panel. Opinions vary, but common tolerances for this process are believed to be
around +3-5°. Here, two-dimensional and three-dimensional finite element analyses
were conducted assuming a 1° ply misalignment on the inner layer, assuming all
other layers have been oriented perfectly. Hence the lamination arrangement
considered was [0+1/-6/-6/0]r. Figure 2 illustrates the influence of this
misalignment on the radial gap. The solid line with the triangles shows the results
from the two-dimensional analysis and the dashed line with the triangles shows the
results of the three-dimensional analysis. It can immediately be noted that the
magnitudes of displacement associated with the ply misalignment tend to
overshadow any of the small displacements associated with the perfect cases, either
with or without through-thickness thermal expansion effects. Both two-dimensional
and three-dimensional analyses predicts a maximum radial gap to occur when 0 is
about 30° and the gap is on the order of 1 in. For 0 greater than 60°, the influence of
the misaligned ply is not as strong. It should be noted that a positive radial gap due
to a misaligned ply does not necessarily signify spring-out for this case.
Accompanying this radial gap is twist, which results in negative displacements at
other corners of the curved panel. It can be seen in the figure that a two-
dimensional analysis fairly well represents the radial gap effects. At 8 = 90° there is
disagreement because of the through-thickness thermal expansion effect. The
tangential gap, shown in Fig. 3, is also influenced by ply misalignment. In relation
to the tangential gap for the perfect case, at 8 =30° there is about 0.2 inch more
tangential gap, or about twice as much as the perfect case. It should be emphasized
that overcoming an unwanted tangential gap in a curved panel is much more
difficult than overcoming an unwanted radial gap. To overcome an unwanted
tangential gap, the laminate must be stretched or compressed in the circumferential
direction, essentially overcoming inplane stiffness Aj;. (For compression, buckling
could be an issue.) To overcome a radial gap requires bending the laminate in the
circumferential direction. This is resisted by the bending stiffness D;;. Bending a
thin laminate requires less force than stretching it. Finally, Fig. 4 illustrates the
twist that results from a misaligned inner ply. The misalignment effect is most
extreme for © = 0° and 90° and crosses zero at 0 just less than 45°. The predictions
of the two-dimensional analysis are very close to the predictions of the three-
dimensional model, indicating that a two-dimensional model is quite sufficient to
reflect twisting effects, as was the case for both radial and tangential gaps. For all
three measures of distortion, the effect of a misaligned ply tend to be much more
severe than the effects of through-thickness thermal expansion.



EFFECT OF PLY THICKNESS VARIATION

During the curing of the laminate, the resin liquefies and flows out of the laminate
to be absorbed by the bleeder material covering the outside surface of the laminate.
One of the results of this bleeding process can be a geometrically unsymmetric
laminate due to variations in ply thickness from one ply to the next. Specifically, if
the curved panel is fabricated on a tool, then it is possible the plys nearest the tool
do not bleed as much as the plys away from the tool and in contact with the bleeder
material. Here it is assumed the inner ply is 1% thicker than the other three. It is
further assumed that the increased thickness is due to excess resin, so the material
propertties of the thicker ply are slightly different than the other plys. Once again,
two-dimensional and three-dimensional finite element analyses were used to
compare results. Figure 2 shows the variation in radial gap vs. © due to the inner
ply being 1% thicker due to excess resin. The solid and dashed lines with X’s
represent the variations based on two-dimensional and three-dimensional analyses,
respectively. It is seen that for all 0 the radial gap is negative, the largest radial gap
occurring at 6 = 30°. Compared to the misaligned ply case, the thicker ply doesn't
produce as large a maximum deviation of radial gap relative to the baseline case.
For © greater than 60° the influences of the thicker ply are not as great as for
smaller values of 0. The tangential gap, shown in Fig. 3, is different enough
relative to the baseline case that it could cause misfit problems. Averaged over 6,
the thicker ply causes about the same deviation of the radial and tangential gaps
relative to the baseline case as the misaligned ply. In contrast, the twist due to the
thicker ply, shown in Fig. 4, is nowhere as severe as the twist due to a misaligned
ply, though the twist is much more than the baseline case. Overall, for the radial
and tangential gaps and the twist, the two-dimensional model and the three-
dimensional model agree reasonably well.

CONCLUSIONS

From the study it can be concluded that for the situation considered here, the
misaligned ply causes the most severe distortion of a curved panel. Obviously this
is based on using a 1° misalignment and a 1% thicker ply, somewhat arbitrary
numbers. Of less importance is the influence of the through-thickness thermal
expansion. It should be noted, however, that as laminate thickness increases, fora
fixed radius, the through-thickness thermal expansion effect becomes more
pronounced. Furthermore, it appears that a two-dimensional model adequately
represents the effects of a misaligned ply and a thick ply, but a three-dimensional
model is needed to evaluate through-thickness thermal expansion effects.
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